2024/06/13--代码随想录算法3/17|01背包问题 二维、01背包问题 一维、416. 分割等和子集

本文主要是介绍2024/06/13--代码随想录算法3/17|01背包问题 二维、01背包问题 一维、416. 分割等和子集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
在这里插入图片描述

01背包问题 二维

卡码网链接
在这里插入图片描述

动态规划5步曲

  1. 确定dp数组(dp table)以及下标的含义:dp[i][j] :从下标为[0,i-1]个物品中任取,放进容量为j的背包,价值总和最大为多少。
  2. 确定递推公式,
    有两个方向可以推导出来dp[i][j] :
    不放物品i: dp[i][j] = dp[i - 1][j]
    放物品i: dp[i][j] = dp[i-1][j-weight[i]] + value[i]
    所以递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
  3. dp数组如何初始化 【】
vector<vector<int>> dp(weight.size(), vector<int>(bagweight + 1, 0));
for (int j = 0 ; j < weight[0]; j++) {  // 当然这一步,如果把dp数组预先初始化为0了,这一步就可以省略,但很多同学应该没有想清楚这一点。dp[0][j] = 0;
}
// 正序遍历
for (int j = weight[0]; j <= bagweight; j++) {dp[0][j] = value[0];
}
  1. 确定遍历顺序【其实从递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出dp[i][j] 是由左上方数值推导出来了,那么 其他下标初始为什么数值都可以,因为都会被覆盖。】
  2. 举例推导dp数组
    先遍历物品,还是先遍历背包都可以,先遍历物品比较简单
def hanshu():M, bagweight = [int(x) for x in input().split()]weight = [int(x) for x in input().split()]value = [int(x) for x in input().split()]dp = [[0]*(bagweight+1) for i in range(M)]  #dp[i][j]代表从物品【0,i-1】让任意取,背包重量j,达到的最大价值#初始化for j in range(weight[0],bagweight+1):dp[0][j] = value[0]for i in range(1, M):for j in range(1, bagweight+1):if j>=weight[i]:dp[i][j] = max(dp[i-1][j], dp[i-1][j-weight[i]]+value[i])else:dp[i][j] = dp[i-1][j]return dp[M-1][bagweight]maxs = hanshu()
print(maxs)

01背包问题 一维(滚动数组)

其实就是遍历物品i的时候,覆盖i-1的结果

动态规划5步曲

  1. 确定dp数组(dp table)以及下标的含义:dp[j] :容量为j的背包,价值总和最大为dp[i]。
  2. 确定递推公式,
    有两个方向可以推导出来dp[i][j] :
    不放物品i: dp[i][j] = dp[i - 1][j]
    放物品i: dp[i][j] = dp[i-1][j-weight[i]] + value[i]
    所以递归公式:此时dp[j]有两个选择,一个是取自己dp[j] 相当于 二维dp数组中的dp[i-1][j],即不放物品i,一个是取dp[j - weight[i]] + value[i],即放物品i,指定是取最大的,毕竟是求最大价值,
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
  1. dp数组如何初始化
  2. 确定遍历顺序 倒序遍历背包是为了保证物品i只被放入一次!
    在这里插入图片描述
for(int i = 0; i < weight.size(); i++) { // 遍历物品for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量【倒序】dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);}
}
def test_1_wei_bag_problem():weight = [1, 3, 4]value = [15, 20, 30]bagWeight = 4# 初始化dp = [0] * (bagWeight + 1)for i in range(len(weight)):  # 遍历物品for j in range(bagWeight, weight[i] - 1, -1):  # 遍历背包容量dp[j] = max(dp[j], dp[j - weight[i]] + value[i])print(dp[bagWeight])test_1_wei_bag_problem()

416. 分割等和子集

力扣链接
在这里插入图片描述
要明确本题中我们要使用的是01背包,因为元素我们只能用一次。

回归主题:首先,本题要求集合里能否出现总和为 sum / 2 的子集。
在这里插入图片描述

动态规划5步曲

  1. 确定dp数组(dp table)以及下标的含义:dp[j] :容量为j的背包,价值总和最大为dp[i]。
  2. 确定递推公式,
    有两个方向可以推导出来dp[i][j] :
    不放物品i: dp[i][j] = dp[i - 1][j]
    放物品i: dp[i][j] = dp[i-1][j-weight[i]] + value[i]
    所以递归公式:此时dp[j]有两个选择,一个是取自己dp[j] 相当于 二维dp数组中的dp[i-1][j],即不放物品i,一个是取dp[j - weight[i]] + value[i],即放物品i,指定是取最大的,毕竟是求最大价值,
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
  1. dp数组如何初始化
  2. 确定遍历顺序 倒序遍历背包是为了保证物品i只被放入一次!
    == 如果 dp[j] = j 说明,集合中的子集总和正好可以凑成总和j,理解这一点很重要。==
    主要要理解,题目中物品是nums[i],重量是nums[i],价值也是nums[i],背包体积是sum/2。
    时间复杂度:O(n^2)
    空间复杂度:O(n)
class Solution:def canPartition(self, nums: List[int]) -> bool:if sum(nums) % 2 != 0:return Falsetarget = sum(nums) // 2dp = [0] * (target + 1)for num in nums:for j in range(target, num-1, -1):dp[j] = max(dp[j], dp[j-num] + num)return dp[-1] == target    # 集合中的元素正好可以凑成总和target
class Solution:def canPartition(self, nums: List[int]) -> bool:total_sum = sum(nums)if total_sum % 2 != 0:return Falsetarget_sum = total_sum // 2dp = [[False] * (target_sum + 1) for _ in range(len(nums) + 1)]# 初始化第一行(空子集可以得到和为0)for i in range(len(nums) + 1):dp[i][0] = Truefor i in range(1, len(nums) + 1):for j in range(1, target_sum + 1):if j < nums[i - 1]:# 当前数字大于目标和时,无法使用该数字dp[i][j] = dp[i - 1][j]else:# 当前数字小于等于目标和时,可以选择使用或不使用该数字dp[i][j] = dp[i - 1][j] or dp[i - 1][j - nums[i - 1]]return dp[len(nums)][target_sum]

这篇关于2024/06/13--代码随想录算法3/17|01背包问题 二维、01背包问题 一维、416. 分割等和子集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1059494

相关文章

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

Java 线程池+分布式实现代码

《Java线程池+分布式实现代码》在Java开发中,池通过预先创建并管理一定数量的资源,避免频繁创建和销毁资源带来的性能开销,从而提高系统效率,:本文主要介绍Java线程池+分布式实现代码,需要... 目录1. 线程池1.1 自定义线程池实现1.1.1 线程池核心1.1.2 代码示例1.2 总结流程2. J

idea突然报错Malformed \uxxxx encoding问题及解决

《idea突然报错Malformeduxxxxencoding问题及解决》Maven项目在切换Git分支时报错,提示project元素为描述符根元素,解决方法:删除Maven仓库中的resolv... 目www.chinasem.cn录问题解决方式总结问题idea 上的 maven China编程项目突然报错,是

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

JS纯前端实现浏览器语音播报、朗读功能的完整代码

《JS纯前端实现浏览器语音播报、朗读功能的完整代码》在现代互联网的发展中,语音技术正逐渐成为改变用户体验的重要一环,下面:本文主要介绍JS纯前端实现浏览器语音播报、朗读功能的相关资料,文中通过代码... 目录一、朗读单条文本:① 语音自选参数,按钮控制语音:② 效果图:二、朗读多条文本:① 语音有默认值:②

前端导出Excel文件出现乱码或文件损坏问题的解决办法

《前端导出Excel文件出现乱码或文件损坏问题的解决办法》在现代网页应用程序中,前端有时需要与后端进行数据交互,包括下载文件,:本文主要介绍前端导出Excel文件出现乱码或文件损坏问题的解决办法,... 目录1. 检查后端返回的数据格式2. 前端正确处理二进制数据方案 1:直接下载(推荐)方案 2:手动构造