鸿蒙轻内核调测-内存调测-内存泄漏检测

2024-06-14 01:04

本文主要是介绍鸿蒙轻内核调测-内存调测-内存泄漏检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、基础概念

内存泄漏检测机制作为内核的可选功能,用于辅助定位动态内存泄漏问题。开启该功能,动态内存机制会自动记录申请内存时的函数调用关系(下文简称LR)。如果出现泄漏,就可以利用这些记录的信息,找到内存申请的地方,方便进一步确认。

2、功能配置

  • LOSCFG_MEM_LEAKCHECK:开关宏,默认关闭;若打开这个功能,在target_config.h中将这个宏定义为1。
  • LOSCFG_MEM_RECORD_LR_CNT:记录的LR层数,默认3层;每层LR消耗sizeof(void *)字节数的内存。
  • LOSCFG_MEM_OMIT_LR_CNT:忽略的LR层数,默认4层,即从调用LOS_MemAlloc的函数开始记录,可根据实际情况调整。为啥需要这个配置?有3点原因如下:
    • LOS_MemAlloc接口内部也有函数调用;
    • 外部可能对LOS_MemAlloc接口有封装;
    • LOSCFG_MEM_RECORD_LR_CNT 配置的LR层数有限;
      正确配置这个宏,将无效的LR层数忽略,就可以记录有效的LR层数,节省内存消耗。

3、开发指导

3.1开发流程

该调测功能可以分析关键的代码逻辑中是否存在内存泄漏。开启这个功能,每次申请内存时,会记录LR信息。在需要检测的代码段前后,调用LOS_MemUsedNodeShow接口,每次都会打印指定内存池已使用的全部节点信息,对比前后两次的节点信息,新增的节点信息就是疑似泄漏的内存节点。通过LR,可以找到具体申请的代码位置,进一步确认是否泄漏。

调用LOS_MemUsedNodeShow接口输出的节点信息格式如下:每1行为一个节点信息;第1列为节点地址,可以根据这个地址,使用GDB等手段查看节点完整信息;第2列为节点的大小,等于节点头大小+数据域大小;第3~5列为函数调用关系LR地址,可以根据这个值,结合汇编文件,查看该节点具体申请的位置。

node        size   LR[0]      LR[1]       LR[2]  
0x10017320: 0x528 0x9b004eba  0x9b004f60  0x9b005002 
0x10017848: 0xe0  0x9b02c24e  0x9b02c246  0x9b008ef0 
0x10017928: 0x50  0x9b008ed0  0x9b068902  0x9b0687c4 
0x10017978: 0x24  0x9b008ed0  0x9b068924  0x9b0687c4
0x1001799c: 0x30  0x9b02c24e  0x9b02c246  0x9b008ef0 
0x100179cc: 0x5c  0x9b02c24e  0x9b02c246  0x9b008ef0 

注意: 开启内存检测会影响内存申请的性能,且每个内存节点都会记录LR地址,内存开销也加大。

3.2 编程实例

本实例实现如下功能:构建内存泄漏代码段。

  1. 调用LOS_MemUsedNodeShow接口,输出全部节点信息打印;
  2. 申请内存,但没有释放,模拟内存泄漏;
  3. 再次调用LOS_MemUsedNodeShow接口,输出全部节点信息打印;
  4. 将两次log进行对比,得出泄漏的节点信息;
  5. 通过LR地址,找出泄漏的代码位置;
3.3 示例代码

代码实现如下:

#include <stdio.h>
#include <string.h>
#include "los_memory.h"
#include "los_config.h"void MemLeakTest(void)
{LOS_MemUsedNodeShow(LOSCFG_SYS_HEAP_ADDR);void *ptr1 = LOS_MemAlloc(LOSCFG_SYS_HEAP_ADDR, 8);void *ptr2 = LOS_MemAlloc(LOSCFG_SYS_HEAP_ADDR, 8);LOS_MemUsedNodeShow(LOSCFG_SYS_HEAP_ADDR);
}
3.3 结果验证

编译运行输出log如下:

node         size   LR[0]       LR[1]       LR[2]   
0x20001b04:  0x24   0x08001a10  0x080035ce  0x080028fc 
0x20002058:  0x40   0x08002fe8  0x08003626  0x080028fc 
0x200022ac:  0x40   0x08000e0c  0x08000e56  0x0800359e 
0x20002594:  0x120  0x08000e0c  0x08000e56  0x08000c8a 
0x20002aac:  0x56   0x08000e0c  0x08000e56  0x08004220 node         size   LR[0]       LR[1]       LR[2]   
0x20001b04:  0x24   0x08001a10  0x080035ce  0x080028fc 
0x20002058:  0x40   0x08002fe8  0x08003626  0x080028fc 
0x200022ac:  0x40   0x08000e0c  0x08000e56  0x0800359e 
0x20002594:  0x120  0x08000e0c  0x08000e56  0x08000c8a 
0x20002aac:  0x56   0x08000e0c  0x08000e56  0x08004220 
0x20003ac4:  0x1d   0x08001458  0x080014e0  0x080041e6 
0x20003ae0:  0x1d   0x080041ee  0x08000cc2  0x00000000 

对比两次log,差异如下,这些内存节点就是疑似泄漏的内存块:

0x20003ac4:  0x1d   0x08001458  0x080014e0  0x080041e6 
0x20003ae0:  0x1d   0x080041ee  0x08000cc2  0x00000000 

部分汇编文件如下:

                MemLeakTest:0x80041d4: 0xb510         PUSH     {R4, LR}0x80041d6: 0x4ca8         LDR.N    R4, [PC, #0x2a0]       ; g_memStart0x80041d8: 0x0020         MOVS     R0, R40x80041da: 0xf7fd 0xf93e  BL       LOS_MemUsedNodeShow    ; 0x800145a0x80041de: 0x2108         MOVS     R1, #80x80041e0: 0x0020         MOVS     R0, R40x80041e2: 0xf7fd 0xfbd9  BL       LOS_MemAlloc           ; 0x80019980x80041e6: 0x2108         MOVS     R1, #80x80041e8: 0x0020         MOVS     R0, R40x80041ea: 0xf7fd 0xfbd5  BL       LOS_MemAlloc           ; 0x80019980x80041ee: 0x0020         MOVS     R0, R40x80041f0: 0xf7fd 0xf933  BL       LOS_MemUsedNodeShow    ; 0x800145a0x80041f4: 0xbd10         POP      {R4, PC}0x80041f6: 0x0000         MOVS     R0, R0

其中,通过查找0x080041ee,就可以发现该内存节点是在MemLeakTest接口里申请的且是没有释放的。

如果大家想更加深入的学习 OpenHarmony 开发的内容,不妨可以参考以下相关学习文档进行学习,助你快速提升自己:

OpenHarmony 开发环境搭建:https://qr18.cn/CgxrRy

《OpenHarmony源码解析》:https://qr18.cn/CgxrRy

  • 搭建开发环境
  • Windows 开发环境的搭建
  • Ubuntu 开发环境搭建
  • Linux 与 Windows 之间的文件共享
  • ……

系统架构分析:https://qr18.cn/CgxrRy

  • 构建子系统
  • 启动流程
  • 子系统
  • 分布式任务调度子系统
  • 分布式通信子系统
  • 驱动子系统
  • ……

OpenHarmony 设备开发学习手册:https://qr18.cn/CgxrRy

在这里插入图片描述

OpenHarmony面试题(内含参考答案):https://qr18.cn/CgxrRy

写在最后

  • 如果你觉得这篇内容对你还蛮有帮助,我想邀请你帮我三个小忙:
  • 点赞,转发,有你们的 『点赞和评论』,才是我创造的动力。
  • 关注小编,同时可以期待后续文章ing🚀,不定期分享原创知识。
  • 想要获取更多完整鸿蒙最新学习资源,请移步前往小编:https://qr21.cn/FV7h05

这篇关于鸿蒙轻内核调测-内存调测-内存泄漏检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1058933

相关文章

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

华为鸿蒙HarmonyOS 5.1官宣7月开启升级! 首批支持名单公布

《华为鸿蒙HarmonyOS5.1官宣7月开启升级!首批支持名单公布》在刚刚结束的华为Pura80系列及全场景新品发布会上,除了众多新品的发布,还有一个消息也点燃了所有鸿蒙用户的期待,那就是Ha... 在今日的华为 Pura 80 系列及全场景新品发布会上,华为宣布鸿蒙 HarmonyOS 5.1 将于 7

Redis过期删除机制与内存淘汰策略的解析指南

《Redis过期删除机制与内存淘汰策略的解析指南》在使用Redis构建缓存系统时,很多开发者只设置了EXPIRE但却忽略了背后Redis的过期删除机制与内存淘汰策略,下面小编就来和大家详细介绍一下... 目录1、简述2、Redis http://www.chinasem.cn的过期删除策略(Key Expir

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码

Java内存区域与内存溢出异常的详细探讨

《Java内存区域与内存溢出异常的详细探讨》:本文主要介绍Java内存区域与内存溢出异常的相关资料,分析异常原因并提供解决策略,如参数调整、代码优化等,帮助开发者排查内存问题,需要的朋友可以参考下... 目录一、引言二、Java 运行时数据区域(一)程序计数器(二)Java 虚拟机栈(三)本地方法栈(四)J

java变量内存中存储的使用方式

《java变量内存中存储的使用方式》:本文主要介绍java变量内存中存储的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍2、变量的定义3、 变量的类型4、 变量的作用域5、 内存中的存储方式总结1、介绍在 Java 中,变量是用于存储程序中数据

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

快速修复一个Panic的Linux内核的技巧

《快速修复一个Panic的Linux内核的技巧》Linux系统中运行了不当的mkinitcpio操作导致内核文件不能正常工作,重启的时候,内核启动中止于Panic状态,该怎么解决这个问题呢?下面我们就... 感谢China编程(www.chinasem.cn)网友 鸢一雨音 的投稿写这篇文章是有原因的。为了配置完

Linux内核参数配置与验证详细指南

《Linux内核参数配置与验证详细指南》在Linux系统运维和性能优化中,内核参数(sysctl)的配置至关重要,本文主要来聊聊如何配置与验证这些Linux内核参数,希望对大家有一定的帮助... 目录1. 引言2. 内核参数的作用3. 如何设置内核参数3.1 临时设置(重启失效)3.2 永久设置(重启仍生效