【Python/Pytorch - 网络模型】-- 手把手搭建3D VGG感知损失模型

2024-06-13 19:36

本文主要是介绍【Python/Pytorch - 网络模型】-- 手把手搭建3D VGG感知损失模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
文章目录

文章目录

  • 00 写在前面
  • 01 基于Pytorch版本的3D VGG代码
  • 02 论文下载

00 写在前面

感知损失:对于提升图片的肉眼可见细节,效果十分明显;对于一些指标如(SSIM、PSNR)这些,效果不明显。

在01中,可以根据3D VGG的网络结构,进行模块化编程,主要包括VGG3D模块。

在模型调试过程中,可以先通过简单测试代码,进行代码调试。

01 基于Pytorch版本的3D VGG代码

# 库函数调用
import torch
import torch.nn as nn# VGG3D模块
class CustomVGG3D(nn.Module):def __init__(self, in_channels=3, out_channels=2):super(CustomVGG3D, self).__init__()self.features = nn.Sequential(nn.Conv3d(in_channels, 64, kernel_size=(3, 3, 3), padding=(1, 1, 1)),nn.ReLU(inplace=True),nn.Conv3d(64, 64, kernel_size=(3, 3, 3), padding=(1, 1, 1)),nn.ReLU(inplace=True),nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2)),nn.Conv3d(64, 128, kernel_size=(3, 3, 3), padding=(1, 1, 1)),nn.ReLU(inplace=True),nn.Conv3d(128, 128, kernel_size=(3, 3, 3), padding=(1, 1, 1)),nn.ReLU(inplace=True),nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2)),nn.Conv3d(128, 256, kernel_size=(3, 3, 3), padding=(1, 1, 1)),nn.ReLU(inplace=True),nn.Conv3d(256, 256, kernel_size=(3, 3, 3), padding=(1, 1, 1)),nn.ReLU(inplace=True),nn.Conv3d(256, 256, kernel_size=(3, 3, 3), padding=(1, 1, 1)),nn.ReLU(inplace=True),nn.Conv3d(256, 256, kernel_size=(3, 3, 3), padding=(1, 1, 1)),nn.ReLU(inplace=True),# nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2)),# nn.Conv3d(256, 512, kernel_size=(3, 3, 3), padding=(1, 1, 1)),# nn.ReLU(inplace=True),# nn.Conv3d(512, 512, kernel_size=(3, 3, 3), padding=(1, 1, 1)),# nn.ReLU(inplace=True),# nn.Conv3d(512, 512, kernel_size=(3, 3, 3), padding=(1, 1, 1)),# nn.ReLU(inplace=True),# nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2)),# nn.Conv3d(512, 512, kernel_size=(3, 3, 3), padding=(1, 1, 1)),# nn.ReLU(inplace=True),# nn.Conv3d(512, 512, kernel_size=(3, 3, 3), padding=(1, 1, 1)),# nn.ReLU(inplace=True),# nn.Conv3d(512, 512, kernel_size=(3, 3, 3), padding=(1, 1, 1)),# nn.ReLU(inplace=True),# nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2)),)self.classifier = nn.Sequential(nn.Linear(512 * 8 * 8 * 1, 4096),nn.ReLU(True),nn.Linear(4096, 4096),nn.ReLU(True),nn.Linear(4096, out_channels),nn.Sigmoid())def forward(self, x):x = self.features(x)# x = x.view(x.size(0), -1)# x = self.classifier(x)return x# 测试代码
# if __name__ == '__main__':
#     x = torch.ones([2, 4, 256, 256, 32])
#     model = CustomVGG3D(in_channels=4, out_channels=1)
#     f = model(x)
#     print(f)

02 论文下载

Very deep convolutional neural network based image classification using small training sample size
arXiv: VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION

这篇关于【Python/Pytorch - 网络模型】-- 手把手搭建3D VGG感知损失模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1058231

相关文章

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

Python极速搭建局域网文件共享服务器完整指南

《Python极速搭建局域网文件共享服务器完整指南》在办公室或家庭局域网中快速共享文件时,许多人会选择第三方工具或云存储服务,但这些方案往往存在隐私泄露风险或需要复杂配置,下面我们就来看看如何使用Py... 目录一、android基础版:HTTP文件共享的魔法命令1. 一行代码启动HTTP服务器2. 关键参

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Python获取浏览器Cookies的四种方式小结

《Python获取浏览器Cookies的四种方式小结》在进行Web应用程序测试和开发时,获取浏览器Cookies是一项重要任务,本文我们介绍四种用Python获取浏览器Cookies的方式,具有一定的... 目录什么是 Cookie?1.使用Selenium库获取浏览器Cookies2.使用浏览器开发者工具

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em