yolov8通过训练完成的模型生成图片热力图--论文需要

2024-06-13 15:44

本文主要是介绍yolov8通过训练完成的模型生成图片热力图--论文需要,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

源代码来自于网络

使用pytorch_grad_cam,对特定图片生成热力图结果。
请添加图片描述

安装热力图工具

pip install pytorch_grad_cam
pip install grad-cam
# get_params中的参数:
# weight:
#         模型权重文件,代码默认是yolov8m.pt
# cfg:
#         模型文件,代码默认是yolov8m.yaml,需要注意的是需要跟weight中的预训练文件的配置是一样的,不然会报错
# device:
#         选择使用GPU还是CPU
# method:
#         选择grad-cam方法,默认是GradCAM,这里是提供了几种,可能对效果有点不一样,大家大胆尝试。
# layer::
#         选择需要可视化的层数,只需要修改数字即可,比如想用第9层,也就是model.model[9]。
# backward_type:
#         反向传播的方式,可以是以conf的loss传播,也可以class的loss传播,一般选用all,效果比较好一点。
# conf_threshold:
#         置信度,默认是0.6。
# ratio:
#         默认是0.02,就是用来筛选置信度高的结果,低的就舍弃,0.02则是筛选置信度最高的前2%的图像来进行热力图。![请添加图片描述](https://img-blog.csdnimg.cn/direct/4403f71e29314c68909ca28c037bd2b2.png)
import warningswarnings.filterwarnings('ignore')
warnings.simplefilter('ignore')
import torch, cv2, os, shutil
import numpy as npnp.random.seed(0)
import matplotlib.pyplot as plt
from tqdm import trange
from PIL import Image
from ultralytics.nn.tasks import DetectionModel as Model
from ultralytics.utils.torch_utils import intersect_dicts
from ultralytics.utils.ops import xywh2xyxy
from pytorch_grad_cam import GradCAMPlusPlus, GradCAM, XGradCAM
from pytorch_grad_cam.utils.image import show_cam_on_image
from pytorch_grad_cam.activations_and_gradients import ActivationsAndGradientsdef letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):# Resize and pad image while meeting stride-multiple constraintsshape = im.shape[:2]  # current shape [height, width]if isinstance(new_shape, int):new_shape = (new_shape, new_shape)# Scale ratio (new / old)r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])if not scaleup:  # only scale down, do not scale up (for better val mAP)r = min(r, 1.0)# Compute paddingratio = r, r  # width, height ratiosnew_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh paddingif auto:  # minimum rectangledw, dh = np.mod(dw, stride), np.mod(dh, stride)  # wh paddingelif scaleFill:  # stretchdw, dh = 0.0, 0.0new_unpad = (new_shape[1], new_shape[0])ratio = new_shape[1] / shape[1], new_shape[0] / shape[0]  # width, height ratiosdw /= 2  # divide padding into 2 sidesdh /= 2if shape[::-1] != new_unpad:  # resizeim = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))left, right = int(round(dw - 0.1)), int(round(dw + 0.1))im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add borderreturn im, ratio, (dw, dh)class yolov8_heatmap:def __init__(self, weight, cfg, device, method, layer, backward_type, conf_threshold, ratio):device = torch.device(device)ckpt = torch.load(weight)model_names = ckpt['model'].namescsd = ckpt['model'].float().state_dict()  # checkpoint state_dict as FP32model = Model(cfg, ch=3, nc=len(model_names)).to(device)csd = intersect_dicts(csd, model.state_dict(), exclude=['anchor'])  # intersectmodel.load_state_dict(csd, strict=False)  # loadmodel.eval()print(f'Transferred {len(csd)}/{len(model.state_dict())} items')target_layers = [eval(layer)]method = eval(method)colors = np.random.uniform(0, 255, size=(len(model_names), 3)).astype(np.int32)self.__dict__.update(locals())def post_process(self, result):logits_ = result[:, 4:]boxes_ = result[:, :4]sorted, indices = torch.sort(logits_.max(1)[0], descending=True)return torch.transpose(logits_[0], dim0=0, dim1=1)[indices[0]], torch.transpose(boxes_[0], dim0=0, dim1=1)[indices[0]], xywh2xyxy(torch.transpose(boxes_[0], dim0=0, dim1=1)[indices[0]]).cpu().detach().numpy()def draw_detections(self, box, color, name, img):xmin, ymin, xmax, ymax = list(map(int, list(box)))cv2.rectangle(img, (xmin, ymin), (xmax, ymax), tuple(int(x) for x in color), 2)cv2.putText(img, str(name), (xmin, ymin - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.8, tuple(int(x) for x in color), 2,lineType=cv2.LINE_AA)return imgdef __call__(self, img_path, save_path):# remove dir if existif os.path.exists(save_path):shutil.rmtree(save_path)# make dir if not existos.makedirs(save_path, exist_ok=True)# img processimg = cv2.imread(img_path)img = letterbox(img)[0]img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)img = np.float32(img) / 255.0tensor = torch.from_numpy(np.transpose(img, axes=[2, 0, 1])).unsqueeze(0).to(self.device)# init ActivationsAndGradientsgrads = ActivationsAndGradients(self.model, self.target_layers, reshape_transform=None)# get ActivationsAndResultresult = grads(tensor)activations = grads.activations[0].cpu().detach().numpy()# postprocess to yolo outputpost_result, pre_post_boxes, post_boxes = self.post_process(result[0])print(post_result.size(0))for i in trange(int(post_result.size(0) * self.ratio)):if float(post_result[i].max()) < self.conf_threshold:breakself.model.zero_grad()# get max probability for this predictionif self.backward_type == 'class' or self.backward_type == 'all':score = post_result[i].max()score.backward(retain_graph=True)if self.backward_type == 'box' or self.backward_type == 'all':for j in range(4):score = pre_post_boxes[i, j]score.backward(retain_graph=True)# process heatmapif self.backward_type == 'class':gradients = grads.gradients[0]elif self.backward_type == 'box':gradients = grads.gradients[0] + grads.gradients[1] + grads.gradients[2] + grads.gradients[3]else:gradients = grads.gradients[0] + grads.gradients[1] + grads.gradients[2] + grads.gradients[3] + \grads.gradients[4]b, k, u, v = gradients.size()weights = self.method.get_cam_weights(self.method, None, None, None, activations,gradients.detach().numpy())weights = weights.reshape((b, k, 1, 1))saliency_map = np.sum(weights * activations, axis=1)saliency_map = np.squeeze(np.maximum(saliency_map, 0))saliency_map = cv2.resize(saliency_map, (tensor.size(3), tensor.size(2)))saliency_map_min, saliency_map_max = saliency_map.min(), saliency_map.max()if (saliency_map_max - saliency_map_min) == 0:continuesaliency_map = (saliency_map - saliency_map_min) / (saliency_map_max - saliency_map_min)# add heatmap and box to imagecam_image = show_cam_on_image(img.copy(), saliency_map, use_rgb=True)cam_image = Image.fromarray(cam_image)cam_image.save(f'{save_path}/{i}.png')def get_params():params = {'weight': './weights/bz-yolov8-aspp-s-100.pt', # 这选择想要热力可视化的模型权重路径'cfg': './ultralytics/cfg/models/cfg2024/YOLOv8-金字塔结构改进/YOLOv8-ASPP.yaml', # 这里选择与训练上面模型权重相对应的.yaml文件路径'device': 'cpu', # 选择设备,其中0表示0号显卡。如果使用CPU可视化 # 'device': 'cpu' cuda:0'method': 'GradCAM', # GradCAMPlusPlus, GradCAM, XGradCAM'layer': 'model.model[6]',   # 选择特征层'backward_type': 'all', # class, box, all'conf_threshold': 0.65, # 置信度阈值默认0.65, 可根据情况调节'ratio': 0.02 # 取前多少数据,默认是0.02,可根据情况调节}return paramsif __name__ == '__main__':model = yolov8_heatmap(**get_params()) # 初始化model('output_002.jpg', './result') # 第一个参数是图片的路径,第二个参数是保存路径,比如是result的话,其会创建一个名字为result的文件夹,如果result文件夹不为空,其会先清空文件夹。

这篇关于yolov8通过训练完成的模型生成图片热力图--论文需要的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1057724

相关文章

Java使用Spire.Doc for Java实现Word自动化插入图片

《Java使用Spire.DocforJava实现Word自动化插入图片》在日常工作中,Word文档是不可或缺的工具,而图片作为信息传达的重要载体,其在文档中的插入与布局显得尤为关键,下面我们就来... 目录1. Spire.Doc for Java库介绍与安装2. 使用特定的环绕方式插入图片3. 在指定位

Java使用Spire.Barcode for Java实现条形码生成与识别

《Java使用Spire.BarcodeforJava实现条形码生成与识别》在现代商业和技术领域,条形码无处不在,本教程将引导您深入了解如何在您的Java项目中利用Spire.Barcodefor... 目录1. Spire.Barcode for Java 简介与环境配置2. 使用 Spire.Barco

SpringBoot集成iText快速生成PDF教程

《SpringBoot集成iText快速生成PDF教程》本文介绍了如何在SpringBoot项目中集成iText9.4.0生成PDF文档,包括新特性的介绍、环境准备、Service层实现、Contro... 目录SpringBoot集成iText 9.4.0生成PDF一、iText 9新特性与架构变革二、环

Python多任务爬虫实现爬取图片和GDP数据

《Python多任务爬虫实现爬取图片和GDP数据》本文主要介绍了基于FastAPI开发Web站点的方法,包括搭建Web服务器、处理图片资源、实现多任务爬虫和数据可视化,同时,还简要介绍了Python爬... 目录一. 基于FastAPI之Web站点开发1. 基于FastAPI搭建Web服务器2. Web服务

idea-java序列化serialversionUID自动生成方式

《idea-java序列化serialversionUID自动生成方式》Java的Serializable接口用于实现对象的序列化和反序列化,通过将对象转换为字节流来存储或传输,实现Serializa... 目录简介实现序列化serialVersionUID配置使用总结简介Java.io.Seripyth

Java中的随机数生成案例从范围字符串到动态区间应用

《Java中的随机数生成案例从范围字符串到动态区间应用》本文介绍了在Java中生成随机数的多种方法,并通过两个案例解析如何根据业务需求生成特定范围的随机数,本文通过两个实际案例详细介绍如何在java中... 目录Java中的随机数生成:从范围字符串到动态区间应用引言目录1. Java中的随机数生成基础基本随

Java领域模型示例详解

《Java领域模型示例详解》本文介绍了Java领域模型(POJO/Entity/VO/DTO/BO)的定义、用途和区别,强调了它们在不同场景下的角色和使用场景,文章还通过一个流程示例展示了各模型如何协... 目录Java领域模型(POJO / Entity / VO/ DTO / BO)一、为什么需要领域模

C#自动化生成PowerPoint(PPT)演示文稿

《C#自动化生成PowerPoint(PPT)演示文稿》在当今快节奏的商业环境中,演示文稿是信息传递和沟通的关键工具,下面我们就深入探讨如何利用C#和Spire.Presentationfor.NET... 目录环境准备与Spire.Presentation安装核心操作:添加与编辑幻灯片元素添加幻灯片文本操

深入理解Redis线程模型的原理及使用

《深入理解Redis线程模型的原理及使用》Redis的线程模型整体还是多线程的,只是后台执行指令的核心线程是单线程的,整个线程模型可以理解为还是以单线程为主,基于这种单线程为主的线程模型,不同客户端的... 目录1 Redis是单线程www.chinasem.cn还是多线程2 Redis如何保证指令原子性2.

利用Python将PDF文件转换为PNG图片的代码示例

《利用Python将PDF文件转换为PNG图片的代码示例》在日常工作和开发中,我们经常需要处理各种文档格式,PDF作为一种通用且跨平台的文档格式,被广泛应用于合同、报告、电子书等场景,然而,有时我们需... 目录引言为什么选择 python 进行 PDF 转 PNG?Spire.PDF for Python