英伟达算法岗面试,问的贼专业。。。

2024-06-13 11:36
文章标签 算法 面试 专业 伟达

本文主要是介绍英伟达算法岗面试,问的贼专业。。。,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

节前,我们星球组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、参加社招和校招面试的同学。

针对算法岗技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备、面试常考点分享等热门话题进行了深入的讨论。

合集:

《大模型面试宝典》(2024版) 正式发布!
持续火爆!《AIGC 面试宝典》已圈粉无数!


这两天求职群分享了很多大厂的算法岗面试真题(暑期实习基本结束了,校招即将开启)。

这里特别整理了部分英伟达的最新面试题,希望对你有所帮助。

1. 介绍MoE和变体

2. 介绍LoRA和变体

3. LoRA 参数更新机制

4. MLM和MIM的关系和区别?

5. Stable Diffusion的技术原理

6. 解決LLM Hallucination的方法

7. Occupancy预测的出发点是什么?

8. 2D图像预训练怎么迁移到3D点云任务

9. 把Transformer模型训深的问题有哪些?怎么解决

10. 现在车道线检测的主流的loss是什么?你有哪些想法?

11. 为什么GAN中经常遇到mode collapse,而Diffusion比较少?

我还特别整理15道Transformer高频面试题求职群里有数百道Transformer题目,还有答案

  1. 介绍Transformer和ViT

  2. 介绍Transformer的QKV

  3. 介绍Layer Normalization

  4. Transformer训练和部署技巧

  5. 介绍Transformer的位置编码

  6. 介绍自注意力机制和数学公式

  7. 介绍Transformer的Encoder模块

  8. 介绍Transformer的Decoder模块

  9. Transformer和Mamba(SSM)的区别

  10. Transformer中的残差结构以及意义

  11. 为什么Transformer适合多模态任务?

  12. Transformer的并行化体现在哪个地方?

  13. 为什么Transformer一般使用LayerNorm?

  14. Transformer为什么使用多头注意力机制?

  15. Transformer训练的Dropout是如何设定的?

精选

  • 轻松构建聊天机器人,大模型 RAG 有了更强大的AI检索器
  • 一文搞懂大模型训练加速框架 DeepSpeed 的使用方法!
  • 保姆级学习指南:《Pytorch 实战宝典》来了
  • MoE 大模型的前世今生
  • 从零解读 SAM(Segment Anything Model)
  • AI 绘画爆火背后:扩散模型原理及实现
  • 从零开始构建和训练生成对抗网络(GAN)模型
  • CLIP/LLaVA/LLaVA1.5/VILA 模型全面梳理!
  • 从零开始创建一个小规模的稳定扩散模型!
  • Stable Diffusion 模型:LDM、SD 1.0, 1.5, 2.0、SDXL、SDXL-Turbo 等
  • 文生图模型:AE、VAE、VQ-VAE、VQ-GAN、DALL-E 等 8 模型
  • 一文搞懂 BERT(基于Transformer的双向编码器)
  • 一文搞懂 GPT(Generative Pre-trained Transformer)
  • 一文搞懂 ViT(Vision Transformer)
  • 一文搞懂 Transformer
  • 一文搞懂 Attention(注意力)机制
  • 一文搞懂 Self-Attention 和 Multi-Head Attention
  • 一文搞懂 Embedding(嵌入)
  • 一文搞懂 Encoder-Decoder(编码器-解码器)

这篇关于英伟达算法岗面试,问的贼专业。。。的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1057187

相关文章

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

如何在Ubuntu上安装NVIDIA显卡驱动? Ubuntu安装英伟达显卡驱动教程

《如何在Ubuntu上安装NVIDIA显卡驱动?Ubuntu安装英伟达显卡驱动教程》Windows系统不同,Linux系统通常不会自动安装专有显卡驱动,今天我们就来看看Ubuntu系统安装英伟达显卡... 对于使用NVIDIA显卡的Ubuntu用户来说,正确安装显卡驱动是获得最佳图形性能的关键。与Windo

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

数据库面试必备之MySQL中的乐观锁与悲观锁

《数据库面试必备之MySQL中的乐观锁与悲观锁》:本文主要介绍数据库面试必备之MySQL中乐观锁与悲观锁的相关资料,乐观锁适用于读多写少的场景,通过版本号检查避免冲突,而悲观锁适用于写多读少且对数... 目录一、引言二、乐观锁(一)原理(二)应用场景(三)示例代码三、悲观锁(一)原理(二)应用场景(三)示例

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.