【OpenCV】opencv-4.9.0源码编译

2024-06-13 04:12
文章标签 编译 源码 opencv 4.9

本文主要是介绍【OpenCV】opencv-4.9.0源码编译,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

很高兴在雪易的CSDN遇见你 

VTK技术爱好者 QQ:870202403      公众号:VTK忠粉


前言

本文分享OpenCV-4.9.0源码编译流程,包含CUDA模块,包含Python-opencv,希望对各位小伙伴有所帮助!

感谢各位小伙伴的点赞+关注,小易会继续努力分享,一起进步!

你的点赞就是我的动力(^U^)ノ~YO


目录

前言

1. 环境准备

2. 源码下载

3. CMake编译

3.1 创建cmake项目

3.2 设置编译配置

结论:


1. 环境准备

  • Visual Studio 2022
  • Python3.12
  • CUDA: 12.2, cudnn: 9.0
  • CMake3.27.0

2. 源码下载

下载OpenCV源码,此处需要下载两个源码,分别是opencvopencv_contrib。下载链接为

opencv:
https://github.com/opencv/opencv/archive/4.8.0.zip
opencv_contrib:
https://github.com/opencv/opencv_contrib/tags

  不过在下载时要注意一点,就是要保证opencvopencv_contrib下载的版本要一致,此处我们下载的版本为:4.9.0。下载完成后,将两个文件解压到同一个文件夹中。

3. CMake编译

3.1 创建cmake项目

  打开CMake软件,设置项目源码路径,并在源码路径下创建一个build文件夹,并设置编译文件夹,如下图所示:

  接下来点击Configure,进行第一次配置,然后回弹出编译平台选择,此处根据自己电脑的编译软件进行选择,在本文中我们使用的是Visual Studio 2022,然后选择编译平台为x64

  第一次配置生成后,输出如下所示:

3.2 设置编译配置

首先添加opencv_contrib模块的引用,在OPENCV_EXTRA_MODULES_PATH条目中添加该模块的路径,然后选择OPENCV_ENABLE_NONFREE,如下图所示:

接下来添加CUDA的设置,首先选择WITH_CUDA,如下图所示:

然后选择OPENCV_DNN_CUDA,此处还可以选择OPENCV_DNN_OPENVINO等不同的模型部署,如下图所示:

 最后选择ENABLE_FAST_MATH

 此处为了让生成的依赖库文件都集成在一个文件中,方便后面使用,所以此处可以选择BUILD_opencv_world,如果不选择,生成的 文件将会被拆散成多个文件。

  

还有Python相关的选项

第二次Configure后,下一步就是需要检查一下其过程是否有异常抛出

第一个异常:

解决方案:

DNN: CUDA backend requires cuDNN. Please resolve dependency or disable OPENCV_DNN_CUDA=OFF · Issue #25426 · opencv/opencv · GitHub

cuDNN9还不支持,因此切换为相应的cuDNN版本。

下载时需要注册账号,但又经常会卡在注册账号页面。可以右键复制连接后,在迅雷中下载。

下载完成后,打开压缩文件,将lib,dll,include文件夹的文件复制到CUDA的安装目录对应的文件夹下。

并在变量CUDNN_LIBRARY中写入cudnn.lib的路径 

第二个异常:文件下载异常

  首先查看一下配置输出框是否抛出警告,如果有的话,一定要解决一下,不然后续编译会出错。

image

  当出现上图所示的异常后,就需要手动解决一下该问题,首先找到build\CMakeDownloadLog.txt文件,然后打开后,查看一下是否有下图所示的文件确实异常。如果有,请自行下载,下载链接如下图所示标注位置,下载后将文件放置在下图所示缺失文件路径,并按照要求修改名称。

image

折腾了一天,终于看到Configuring done !

结论:

感谢各位小伙伴的点赞+关注,小易会继续努力分享,一起进步!

这篇关于【OpenCV】opencv-4.9.0源码编译的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1056241

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

C/C++中OpenCV 矩阵运算的实现

《C/C++中OpenCV矩阵运算的实现》本文主要介绍了C/C++中OpenCV矩阵运算的实现,包括基本算术运算(标量与矩阵)、矩阵乘法、转置、逆矩阵、行列式、迹、范数等操作,感兴趣的可以了解一下... 目录矩阵的创建与初始化创建矩阵访问矩阵元素基本的算术运算 ➕➖✖️➗矩阵与标量运算矩阵与矩阵运算 (逐元

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

C/C++和OpenCV实现调用摄像头

《C/C++和OpenCV实现调用摄像头》本文主要介绍了C/C++和OpenCV实现调用摄像头,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录准备工作1. 打开摄像头2. 读取视频帧3. 显示视频帧4. 释放资源5. 获取和设置摄像头属性

c/c++的opencv图像金字塔缩放实现

《c/c++的opencv图像金字塔缩放实现》本文主要介绍了c/c++的opencv图像金字塔缩放实现,通过对原始图像进行连续的下采样或上采样操作,生成一系列不同分辨率的图像,具有一定的参考价值,感兴... 目录图像金字塔简介图像下采样 (cv::pyrDown)图像上采样 (cv::pyrUp)C++ O

c/c++的opencv实现图片膨胀

《c/c++的opencv实现图片膨胀》图像膨胀是形态学操作,通过结构元素扩张亮区填充孔洞、连接断开部分、加粗物体,OpenCV的cv::dilate函数实现该操作,本文就来介绍一下opencv图片... 目录什么是图像膨胀?结构元素 (KerChina编程nel)OpenCV 中的 cv::dilate() 函

qtcreater配置opencv遇到的坑及实践记录

《qtcreater配置opencv遇到的坑及实践记录》我配置opencv不管是按照网上的教程还是deepseek发现都有些问题,下面是我的配置方法以及实践成功的心得,感兴趣的朋友跟随小编一起看看吧... 目录电脑环境下载环境变量配置qmake加入外部库测试配置我配置opencv不管是按照网上的教程还是de

8种快速易用的Python Matplotlib数据可视化方法汇总(附源码)

《8种快速易用的PythonMatplotlib数据可视化方法汇总(附源码)》你是否曾经面对一堆复杂的数据,却不知道如何让它们变得直观易懂?别慌,Python的Matplotlib库是你数据可视化的... 目录引言1. 折线图(Line Plot)——趋势分析2. 柱状图(Bar Chart)——对比分析3