TensorFlow入门(一)——理论知识介绍及简单代码实现

2024-06-13 02:48

本文主要是介绍TensorFlow入门(一)——理论知识介绍及简单代码实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

TensorFlow入门(一)——理论知识介绍及简单代码实现

  • 一、TensorFlow安装
  • 二、TensorFlow计算模型——计算图(Graph)
    • 概念
    • 属性
  • 三、TensorFlow数据模型——张量(Tensor)
    • 概念
    • 属性
      • 名字——name
      • 维度——shape
      • 类型——type
    • 查看Tensor具体内容
  • 四、Tensorflow运行模型——会话(Session)
    • 概念
    • 使用步骤
      • 方式一(不推荐)
      • 方式二(推荐)
  • 五、完整代码展示

tf是tensorflow的简写,在编程时注意使用import tensorflow as tf,为了方便,以后所有的tf都表示tensorflow

一、TensorFlow安装

此处不再赘述,请参考本人博客,见下面链接
https://blog.csdn.net/u011609063/article/details/84188942

二、TensorFlow计算模型——计算图(Graph)

概念

在这里插入图片描述
该图中每一个节点都是一个运算,每条边代表了计算之间的依赖关系。a和b不依赖其它计算,而add计算依赖a和b,因此有一条a到add和b到add的边。没有任何计算依赖add的结果,所以代表加法的add节点没有指向任何其它节点的边。这种组织方式就是计算图。
注意:不同计算图中的Tensor(张量)不会共享

属性

在计算图中,可以通过集合(collection)来管理不同类别的资源。
例如:
tf.add_to_collection函数可以加入一个或者多个资源到集合中
tf.get_collection函数获取一个集合中所有资源。可以是张量、变量或者运行中队列的资源
TensorFlow中常用集合

集合名称集合内容使用场景
tf.GraphKeys.VARIABLES所有变量持久化TensorFlow模型
tf.GraphKeys.TRAIN_VARIABLES可学习的变量(一般指神经网络中的参数)模型训练、生成模型可视化内容
tf.GraphKeys.SUMMARIES日志生成相关的张量TensorFlow计算可视化
tf.GraphKeys.QUEUE_RUNNERS处理输入的QueueRunner输入处理
tf.GraphKeys.MOVING_AVERAGE_VARIABLES所有计算了滑动平均值的变量计算变量的滑动平均值

三、TensorFlow数据模型——张量(Tensor)

概念

Tensor是TensorFlow中管理数据的形式,所有的数据都通过Tensor的形式表示。
Tensor可以被理解为多维数组,其中
零阶Tensor表示标量(scalar),即一个数
一阶Tensor为向量(vector),即一维数组
n阶Tensor可被理解为n阶数组
Tensor中并没有真正保存数据,它保存的是如何得到这些数字的计算过程的应用,因此无法直接通过print输出结果

属性

下图是通过print函数直接输出的Tensor的结果
在这里插入图片描述

  1. 名字——name

    张量的命名可以通过"node:src_output"表示,其中node为节点名称,src_output表示来自节点的第几个输出。在该图中"add:0"说明了result这个张量是计算节点"add"输出的第一个结果(编号从0开始)

  2. 维度——shape

    该属性描述了Tensor的维度信息,shape=(2, )说明是一个一维数组,长度为2

  3. 类型——type

    每个Tensor都会有唯一的一个类型,当类型不匹配时会报错,例如:

    a = tf.constant([1, 2], name="a")
    b = tf.constant([1.0, 2.0], name="b")
    result = a + b
    

    运行这段代码就会报错,报错具体信息可以自行尝试

查看Tensor具体内容

with tf.Session() as sess:# method 1print("result: {}".format(sess.run(tensor_name)))# method 2print("result: {}".format(tensor_name.eval()))

四、Tensorflow运行模型——会话(Session)

概念

主要是用来执行定义好的运算。会话拥有并管理TensorFlow程序运行时的所哟资源。当计算完成时帮助系统回收资源,否则的话会出现资源泄露的情况。

使用步骤

方式一(不推荐)

  1. 创建——sess = tf.Session()
  2. 使用——sess.run(…)
  3. 关闭——sess.close()

方式二(推荐)

使用该方式无需手动关闭,推荐该方式,因为上述方式当发生异常时,不一定能关闭会话,从而造成资源泄露

with tf.Session() as sess:sess.run(...)

五、完整代码展示

"""
This scripts shows how to generate a new graph and
how to define and use variables in different graph.
Note that:Tensor and Computation in different graphs won't shared with each other
"""
import tensorflow as tfg1 = tf.Graph()
with g1.as_default():# define variable "v" and make it equal to 0 in graph g1v = tf.get_variable("v", shape=[2, 3], initializer=tf.zeros_initializer())g2 = tf.Graph()
with g2.as_default():# define variable "v" and make it equal to 1 in graph g2v = tf.get_variable("v", shape=[3, 2], initializer=tf.ones_initializer())# read the v's value in g1
with tf.Session(graph=g1) as sess:tf.global_variables_initializer().run()with tf.variable_scope("", reuse=True):print("g1_v: {}".format(sess.run(tf.get_variable("v"))))# read the v's value in g2
with tf.Session(graph=g2) as sess:tf.global_variables_initializer().run()with tf.variable_scope("", reuse=True):print("g2_v: {}".format(sess.run(tf.get_variable("v"))))g = tf.Graph()a = tf.constant([1, 2], name="a", dtype=tf.float32)
b = tf.constant([1.0, 2.0], name="b")
result = tf.add(a, b, name="add")# specify the device to run
with g.device("/cpu:0"):with tf.Session() as sess:print("result: {}".format(result.eval()))

写博客不易,转载请注明原出处

这篇关于TensorFlow入门(一)——理论知识介绍及简单代码实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1056070

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.