谱聚类--Ng算法的Matlab简单实现

2024-06-12 20:38

本文主要是介绍谱聚类--Ng算法的Matlab简单实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


请编写一个谱聚类算法,实现“Normalized Spectral Clustering—Algorithm 3 (Ng 算法)”

结果如下


谱聚类算法核心步骤都是相同的:
•利用点对之间的相似性,构建亲和度矩阵;
•构建拉普拉斯矩阵;
•求解拉普拉斯矩阵最小的特征值对应的特征向量(通常舍弃零特征所对应的分量全相等的特征向量);
•由这些特征向量构成样本点的新特征,采用K-means等聚类方法完成最后的聚类。

采用K-means等聚类方法完成最后的聚类  意思是,对特征向量构成的矩阵T,每一行作为一个样本点,进行K均值聚类。

(1)利用点对之间的相似性,构建亲和度矩阵

构建图时,顶点的度为 simK=10,分两类kNearNum=2

[plain] view plain copy
  1. simK=10;  
  2. Wij=zeros(r,r);% weight  
  3. % calculate the weight Matrix  
  4. for k=1:r    
  5.     for n=1:r  
  6.          Wij(k,n)=exp(-norm(X(k,:)-X(n,:))^2/2/sigma);% 计算权重  
  7.     end  
  8. end  
  9.   
  10. % find the Knear  for W  
  11. Wsort=zeros(r,r);  
  12. index=zeros(r,r);  
  13. for k=1:r  
  14. %  对每一行权重排序  
  15.    [Wsort(k,:),index(k,:)]=sort(Wij(k,:));  %这句话经常不会用,记住了。     
  16. end  
  17.   
  18. W=Wij  


(2) 构建Laplace Matrix

首先需要个对角阵D,其对角元素是亲和度矩阵的每行的和,这里也就是simK*eye(r)

[html] view plain copy
  1. % D  
  2. D=simK.*eye(r);  
  3. % Laplace Matrix  
  4. L=eye(r)-D^(-0.5)*W*D^(-0.5);  
  5. L=D-W  

(3) 求解拉普拉斯矩阵最小的特征值(lamda)对应的特征向量)(通常舍弃零特征所对应的分量全相等的特征向量);

把特征向量 Vect里最小的kNearNum(聚类的个数)个用u来存储。

[html] view plain copy
  1. [Vect,lamdaMat]=eig(L);  
  2. lamda=zeros(k,1);  
  3. u=zeros(r,kNearNum);  
  4. % lamda是特征值  
  5. for k=1:r  
  6.     lamda(k)=lamdaMat(k,k);  
  7. end  
  8. % lamda  
  9. %  对lamda排序,找出最小的K个lamda对应的特征向量组成u  
  10. [sortLamda,indexLamda]=sort(lamda);   
  11. countu=0;  
  12. for k=1:kNearNum  
  13.     countu=countu+1;  
  14.     u(:,countu)=Vect(:,indexLamda(k));    
  15. end  
  16. % % T  
  17. T=zeros(r,kNearNum);% 归一化后的u  
  18. sumU=zeros(1,kNearNum);% 为了归一化u,对每列求了平方和sumU  
  19. for n=1:kNearNum  
  20.     for k=1:r  
  21.         sumU(1,n)=sumU(1,n)+u(k,n)^2;  
  22.     end  
  23. end  
  24.   
  25. for k=1:r  
  26.     for n=1:kNearNum  
  27.         T(k,n)=u(k,n)./sqrt(sumU(1,n));  
  28.     end  
  29. end  

(4)由这些特征向量构成样本点的新特征, 采用K-means等聚类方法完成最后的聚类

意思是,对特征向量构成的矩阵T,每一行作为一个样本点聚类

[html] view plain copy
A=Kmeans(T)  % key words

这篇关于谱聚类--Ng算法的Matlab简单实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1055284

相关文章

Spring Boot整合Redis注解实现增删改查功能(Redis注解使用)

《SpringBoot整合Redis注解实现增删改查功能(Redis注解使用)》文章介绍了如何使用SpringBoot整合Redis注解实现增删改查功能,包括配置、实体类、Repository、Se... 目录配置Redis连接定义实体类创建Repository接口增删改查操作示例插入数据查询数据删除数据更

Java Lettuce 客户端入门到生产的实现步骤

《JavaLettuce客户端入门到生产的实现步骤》本文主要介绍了JavaLettuce客户端入门到生产的实现步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目录1 安装依赖MavenGradle2 最小化连接示例3 核心特性速览4 生产环境配置建议5 常见问题

linux ssh如何实现增加访问端口

《linuxssh如何实现增加访问端口》Linux中SSH默认使用22端口,为了增强安全性或满足特定需求,可以通过修改SSH配置来增加或更改SSH访问端口,具体步骤包括修改SSH配置文件、增加或修改... 目录1. 修改 SSH 配置文件2. 增加或修改端口3. 保存并退出编辑器4. 更新防火墙规则使用uf

Java 的ArrayList集合底层实现与最佳实践

《Java的ArrayList集合底层实现与最佳实践》本文主要介绍了Java的ArrayList集合类的核心概念、底层实现、关键成员变量、初始化机制、容量演变、扩容机制、性能分析、核心方法源码解析、... 目录1. 核心概念与底层实现1.1 ArrayList 的本质1.1.1 底层数据结构JDK 1.7

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符