模式识别十--k-均值聚类算法的研究与实现

2024-06-12 20:38

本文主要是介绍模式识别十--k-均值聚类算法的研究与实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 文章转自:http://www.kancloud.cn/digest/prandmethod/102852

本实验的目的是学习和掌握k-均值聚类算法。k-均值算法是一种经典的无监督聚类和学习算法,它属于迭代优化算法的范畴。本实验在MATLAB平台上,编程实现了k-均值聚类算法,并使用20组三维数据进行测试,比较分类结果。实验中初始聚类中心由人为设定,以便于实验结果的比较与分析。

一、技术论述

1.无监督学习和聚类

在之前设计分类器的时候,通常需要事先对训练样本集的样本进行标定以确定类别归属。这种利用有标记样本集的方法称为“有监督”或“有教师”方法。这一类方法的使用固然十分广泛,也有着很坚实的理论基础,但在实际运用中这类方法经常会遇到以下瓶颈:

  1. 收集并标记大量样本集是一件相当费时费力的前期工作;
  2. 现实中存在很多应用,其分类模式的性质会随着时间发生变化,单单使用已标记样本无法满足这类情况;
  3. 有人希望能逆向解决问题:先用大量未标记的样本集来自动地训练分类器,再人工地标记数据分组的结果,如数据挖掘的大型应用,因为这些应用往往不知道待处理数据的具体情况。

可以看到,无监督学习方法的提出是十分必要的。事实上,在任何一项探索性的工作中,无监督的方法均向我们揭示了观测数据的一些普遍规律。很多无监督方法都可以以独立于数据的方式工作,为后续步骤提供“灵巧的预处理”和“灵巧的特征提取”等有效的前期处理。在无监督的情况下,聚类算法是模式识别研究中著名的一类技术。

2.分类与聚类的差别

分类(Classification):对于一个分类器,通常需要你告诉它“这个东西被分为某某类”这样一些例子。通常情况下,一个分类器会从它得到的训练数据中进行学习,从而具备对未知数据进行分类的能力,这种提供训练数据的过程通常叫做有监督学习。

聚类(Clustering):简单地说就是把相似的东西分到一组。聚类的时候,我们并不关心某一类是什么,这里需要实现的目标只是把相似的东西聚到一起。因此,一个聚类算法通常只需要知道如何计算相似度就可以开始工作了。因此,聚类方法通常并不需要使用训练数据进行学习,因此桔类方法属于无监督学习的范畴。

3.常见的分类与聚类算法

所谓分类,就是根据数据样本的特征或属性,划分到已有的类别中。前面使用到的模式分类方法主要有:贝叶斯分类算法(Bayesian classifier) 、PCA主分量分析法、Fisher线性判别分析法、Parzen窗估计法、k-最近邻法(k-nearest neighbor,kNN)、基于支持向量机(SVM)的分类器、人工神经网络(ANN)和决策树分类法等等。

分类作为一种有监督学习方法,要求必须在分类之前明确知道各个类别的必要特征和信息,并且标记所有训练样本都有一个类别与之相对应。但是很多情况下这些条件往往无法满足,尤其是在处理海量数据的时候,数据预处理的代价非常大。

聚类算法中最经典的当属k均值聚类(K-means clustering)算法。该算法又称为“c均值算法”,因为它的目标就是找到c个均值向量作为聚类中心:μ1,μ2,…,μc,实际上k与c是等价的。

以上是对二维随机样本进行聚类的实例。

4.聚类任务的基本步骤

假设所有模式都用一组特征表示,模式被表示为L维的特征矢量。聚类任务需包含以下步骤:

  1. 特征选择。选择特征尽可能与感兴趣的任务相关。特征之间的信息冗余度要尽可能小。
  2. 相似性测度。一个基本的保证是所有选择的特征对相似性测度计算的贡献都是均衡的,没有那一个特征是绝对占优的。
  3. 聚类准则。聚类准则依赖于专家判断的在数据集合内部隐含类的类型解释。聚类准则可以被表示为代价函数和其它类型的规则。
  4. 聚类算法。在确定相似性测度和聚类准则后,这一步就是要选择一个具体的算法方案将数据集合分解为类结构。
  5. 结构的有效性。一旦聚类算法获得了结果,需要采用合适的检验方法检验其正确性。
  6. 结果的解释。应用领域的专家必须结合其它的试验证据和分析解释聚类结果,以便得到正确的结论。

5.k-均值聚类算法

k-均值聚类算法的目标是找到k个均值向量或“聚类中心”。算法的实现步骤如下所示,其中n表示模式的数量,c表示类别的数量,通常的做法是从样本中随机取出c个作为初始的聚类中心。当然,初始的聚类中心也可以通过人为来确定:

该算法的计算复杂度为:

其中d代表样本的维数,T是聚类的迭代次数,一般来说,迭代次数通常远少于样本的数量。

该算法是一种典型的聚类算法,把它归入迭代优化算法的范畴是因为算法规定的c个均值会不断地移动,使得一个平方误差准则函数最小化。在算法的每一步迭代中,每个样本点均被认为是完全属于某一类别。

二、实验结果讨论

实验所使用的样本:

设计步骤主要包括以下几个部分:

编写程序,实现以上所述的k-均值聚类算法。其中,在算法中样本与聚类中心的距离采用欧氏距离的形式。

类别数目和聚类中心初始值选为以下参数进行实验:

再将类别数目和聚类中心初始值改变为以下参数进行实验。

下图得到两次聚类的结果,可以看到当分类类别为2时,初始聚类中心对分类结果影响不大(至少对于样本少的情况是这样的),最终两种情况都能得到一样的最终聚类中心。

下面测试将样本分为三类的情况。将类别数目和聚类中心初始值选为以下参数进行实验:

再将类别数目和聚类中心初始值改变为以下参数进行实验:

下图得到两次聚类的结果,可以看到当分类类别为3时,分类复杂度增加,随着聚类中心的移动,对于同一组测试样本可能有不同的划分结果。虽然初始聚类中心的作用只是将样本初步地分为几个区域,但事实上不同的初始中心会给分类结果带来巨大的差异。

在程序中,使用欧氏距离作为样本到聚类中心的距离,事实上也可以使用其他多种距离度量进行运算,如街区距离(1范数)、棋盘距离(∞范数)等等。

三、完整代码

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% k-均值聚类函数
% 输入参数:
%   w:需要分类的样本
%   k:分类数
%   m:初始聚类中心
%   iteration:迭代次数
% 中间参数:
%   class_id:存放各个样本属于一类的下标
%   dist:计算样本到聚类中心的距离
% 输出参数:
%   class_result:存放样本的分类结果
%   class_num:存放被分到各类的样本个数
%   center:迭代结束时的聚类中心
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [class_result, class_num, center] = kmeans(w, k, m, iteration)
[n,d] = size(w);class_result = zeros(1,n);
class_num = zeros(1,k);    
time = 1;% 以下步骤计算每个样本到聚类中心的距离
while time < iteration % 迭代次数限制for i = 1:ndist = sqrt(sum((repmat(w(i,:), k, 1) - m).^2, 2));   % 欧氏距离% dist = sum(abs(repmat(x(i,:), k, 1) - nc), 2);      % 街区距离[y,class_id] = min(dist); % 计算样本对三类中哪一类有最小距离并存放在class_idclass_result(i) = class_id;endfor i = 1:k% 找到每一类的所有数据,计算平均值,其值作为新的聚类中心class_id = find(class_result == i);m(i, :) = mean(w(class_id, :));  % 更新聚类中心% 统计每一类样本的个数class_num(i) = length(class_id);endtime = time + 1;
end
center = m;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 样本分类结果的绘图函数
% 输入参数:
%   w:需要分类的样本
%   class:聚类后的样本分类结果
%   flag:分类类别数
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function draw(w, class, center)[flag x] = size(center);
[n, d] = size(w);% figure;
if flag == 2 % 若将样本分成两类for i=1:nif class(i) == 1plot3(w(i,1),w(i,2),w(i,3),'r+'); % 显示第一类hold on;grid on;elseif class(i) == 2plot3(w(i,1),w(i,2),w(i,3),'go'); %显示第二类hold on;grid on;endendfor j = 1:flagif j == 1plot3(center(j,1),center(j,2),center(j,3),'rd'); % 聚类中心elseif j == 2plot3(center(j,1),center(j,2),center(j,3),'gd'); % 聚类中心endend
endif flag == 3 % 若将样本分成三类
% 显示分类结果for i = 1:nif class(i) == 1plot3(w(i,1),w(i,2),w(i,3),'r+'); % 显示第一类hold on;grid on;elseif class(i) == 2plot3(w(i,1),w(i,2),w(i,3),'go'); % 显示第二类hold on;grid on;elseif class(i) == 3plot3(w(i,1),w(i,2),w(i,3),'b*'); % 显示第三类hold on;  grid on;endendfor j = 1:flagif j == 1plot3(center(j,1),center(j,2),center(j,3),'rd'); % 聚类中心elseif j == 2plot3(center(j,1),center(j,2),center(j,3),'gd'); % 聚类中心elseif j == 3plot3(center(j,1),center(j,2),center(j,3),'bd'); % 聚类中心endend
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% k-均值聚类的研究与实现主函数
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all;
close all;

% 测试样本
w = [-7.82 -4.58 -3.97;...-6.68  3.16  2.71;...
      4.36 -2.19  2.09;...6.72  0.88  2.80;...-8.64  3.06  3.50;...
     -6.87  0.57 -5.45;...
      4.47 -2.62  5.76;...6.73 -2.01  4.18;...-7.71  2.34 -6.33;...
     -6.91 -0.49 -5.68;...
      6.18  2.18  5.28;...6.72 -0.93 -4.04;...-6.25 -0.26  0.56;...
     -6.94 -1.22  1.33;...
      8.09  0.20  2.25;...6.81  0.17 -4.15;...-5.19  4.24  4.04;...
     -6.38 -1.74  1.43;...
      4.08  1.30  5.33;...6.27  0.93 -2.78];[n, d] = size(w);

% 以下是k均值聚类的参数设定(c = 2时)
k = 2;
m = [1 1 1; -1 1 -1]; % 初始聚类中心
% m = [0 0 0; 1 1 -1]; % 初始聚类中心
iteration = 200; % k均值聚类的迭代次数
% 调用kmeans函数进行聚类
[class, class_num, center] = kmeans(w, k, m, iteration);
% 画出样本分类结果
figure;subplot(121);draw(w, class, center);
title('使用第一种初始聚类中心时,k-均值聚类算法分类结果');

% 显示信息
disp(['属于第一类的样本个数为:',num2str(class_num(1))]);
disp(['属于第二类的样本个数为:',num2str(class_num(2))]);
disp('最终的聚类中心为:');
disp(num2str(center));

% 以下是k均值聚类的参数设定(c = 2时)
k = 2;
% m = [1 1 1; -1 1 -1]; % 初始聚类中心
m = [0 0 0; 1 1 -1]; % 初始聚类中心
iteration = 200; % k均值聚类的迭代次数
% 调用kmeans函数进行聚类
[class, class_num, center] = kmeans(w, k, m, iteration);
% 画出样本分类结果
subplot(122);draw(w, class, center);
title('使用第二种初始聚类中心时,k-均值聚类算法分类结果');

% 显示信息
disp(['属于第一类的样本个数为:',num2str(class_num(1))]);
disp(['属于第二类的样本个数为:',num2str(class_num(2))]);
disp('最终的聚类中心为:');
disp(num2str(center));

% 以下是k均值聚类的参数设定(c = 3时)
k = 3;
m = [0 0 0; 1 1 1; -1 0 2]; % 初始聚类中心
% m = [-0.1 0.0 0.1; 0 -0.1 0.1; -0.1 -0.1 0.1]; % 初始聚类中心
iteration = 200; % k均值聚类的迭代次数
% 调用kmeans函数进行聚类
[class, class_num, center] = kmeans(w, k, m, iteration);
% 画出样本分类结果
figure;subplot(121);draw(w, class, center);
title('使用第一种初始聚类中心时,k-均值聚类算法分类结果');
% 显示信息
disp(['属于第一类的样本个数为:',num2str(class_num(1))]);
disp(['属于第二类的样本个数为:',num2str(class_num(2))]);
disp(['属于第三类的样本个数为:',num2str(class_num(3))]);
disp('最终的聚类中心为:');
disp(num2str(center));

% 以下是k均值聚类的参数设定(c = 3时)
k = 3;
% m = [0 0 0; 1 1 1; -1 0 2]; % 初始聚类中心
m = [-0.1 0.0 0.1; 0 -0.1 0.1; -0.1 -0.1 0.1]; % 初始聚类中心
iteration = 200; % k均值聚类的迭代次数
% 调用kmeans函数进行聚类
[class, class_num, center] = kmeans(w, k, m, iteration);
% 画出样本分类结果
subplot(122);draw(w, class, center);
title('使用第二种初始聚类中心时,k-均值聚类算法分类结果');
% 显示信息
disp(['属于第一类的样本个数为:',num2str(class_num(1))]);
disp(['属于第二类的样本个数为:',num2str(class_num(2))]);
disp(['属于第三类的样本个数为:',num2str(class_num(3))]);
disp('最终的聚类中心为:');
disp(num2str(center));

这篇关于模式识别十--k-均值聚类算法的研究与实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1055279

相关文章

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

Qt使用QSqlDatabase连接MySQL实现增删改查功能

《Qt使用QSqlDatabase连接MySQL实现增删改查功能》这篇文章主要为大家详细介绍了Qt如何使用QSqlDatabase连接MySQL实现增删改查功能,文中的示例代码讲解详细,感兴趣的小伙伴... 目录一、创建数据表二、连接mysql数据库三、封装成一个完整的轻量级 ORM 风格类3.1 表结构

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核