实时流Streaming大数据:Storm,Spark和Samza

2024-06-12 19:38

本文主要是介绍实时流Streaming大数据:Storm,Spark和Samza,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 当前有许多分布式计算系统能够实时处理大数据,这篇文章是对Apache的三个框架进行比较,试图提供一个快速的高屋建瓴地异同性总结。

Apache Storm

  在Storm中,你设计的实时计算图称为toplogy,将其以集群方式运行,其主节点会在工作节点之间分发代码并执行,在一个topology中,数据是在spout之间传递,它发射数据流作为不可变的key-value匹配集合,这种key-value配对值称为tuple,bolt是用来转换这些流如count计数或filter过滤等,bolt它们自己也可选择发射数据到其它流处理管道下游的bolt。

storm streaming

 

Apache Spark

  Spark Streaming是核心Spark的一个拓展,并不是像Storm一次处理流,而是将它们分成片段,变成小批量时间间隔处理,Spark抽象一个持续的数据流称为DStream(离散流),一个DStream是RDD(弹性分布式数据集的简称)的微批次 micro-batch,RDD是分布式集合能够并行地被任何函数操作,也可以通过一个滑动窗口的数据(窗口计算)进行变换。

spark streaming

 

Apache Samza

  Samza 的目标是将流作为接受到的消息处理,同时,Samza的流初始元素并不是一个tuple或一个DStream,而是一个消息,流被划分到分区,每个分区是一个只读消息的排序的序列,每个消息有一个唯一的ID(offset),系统也支持批处理,从同样的流分区以顺序消费几个消息,尽管Samza主要是依赖于Hadoop的Yarn和Apache Kafka,但是它的Execution & Streaming模块是可插拔的。

samza streaming

 

共同点

  这三个实时计算系统都是开源的,低延迟的,分布式的,可扩展的和容错的,他们都允许你在有错误恢复的集群中通过并行任务执行流处理代码,他们也提供简单的API抽象底层和复杂的实现。

这三个框架使用不同的词汇表达相似的概念:

 

不同点

不同点总结如下表:

有三个delivery模式:

  • At-most-once: 消息也许丢失,这通常是最不理想的结果。
  • At-least-once: 消息可以被退回(没有损失,但是会重复),这足够支持很多用例场景了。
  • Exactly-once: 每个消息只传递一次,也只有一次(不会丢失,无重复),这是一个理想功能,在所有情况下很难达到。

另外一个方面是状态管理,有许多不同的策略来存储状态,Spark Streaming写数据到分布式文件系统如HDFS,而Samza使用一个嵌入的key-value存储,Storm则或在应用层使用自己的状态管理,或使用一个高层次抽象称为:Trident.

 

使用场景

  所有这三个框架都特别适合处理连续的大量的实时数据,那么选择哪一个呢?并没有硬性规则,基本是通用的指南。

  如果你想要一个高速事件流处理系统,能够进行增量计算,那么Storm将非常适合,如果你还需要按需运行分布式计算,而客户端正在同步等待结果,那么你得在其外面使用分布式RPC(DRPC),最后但并非最不重要的是:因为Storm使用Apache Thrift,你能以任何语言编写拓扑topology,如果你需要状态持久或exactly-once传递,那么你应当看看高级别的Trident API,它也提供微批处理(micro-batching)

  使用Storm的公司有 Twitter, Yahoo!, Spotify, The Weather Channel...

  谈到微批处理,如果你必须有有态计算,exactly-once传递和不介意高延迟,你可以考虑Spark Streaming,特别如果计划实现图操作,机器学习或访问SQL,Apache Spark能让你通过结合Spark SQL, MLlib, GraphX几个库包实现,这些提供方便的统一的编程模型,特别是流算法如流k-means允许Spark实时进行决策。

  使用Spark有:Amazon, Yahoo!, NASA JPL, eBay Inc., Baidu

  如果你有大量的状态,比如每个分区有很多G字节,Samza协同存储和在同一机器处理的模型能让你有效处理状态,且不会塞满内存。这个框架提供灵活的可插拔API:它的默认execution 消息和存储引擎能够被你喜欢的选择替代,更有甚者,如果你有很多流处理过程,它们分别来自于不同的代码库不同的团队,Samza细粒度的工作特点将特别适合,因为它们能最小的影响来进行加入和移除。

这篇关于实时流Streaming大数据:Storm,Spark和Samza的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1055145

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本