路径规划 | 图解遗传(GA)算法(附ROS C++仿真)

2024-06-12 13:36

本文主要是介绍路径规划 | 图解遗传(GA)算法(附ROS C++仿真),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 0 专栏介绍
  • 1 从进化论说起
  • 2 遗传算法基本概念
  • 3 遗传算法流程
  • 4 遗传算法ROS实现

0 专栏介绍

🔥附C++/Python/Matlab全套代码🔥课程设计、毕业设计、创新竞赛必备!详细介绍全局规划(图搜索、采样法、智能算法等);局部规划(DWA、APF等);曲线优化(贝塞尔曲线、B样条曲线等)。

🚀详情:图解自动驾驶中的运动规划(Motion Planning),附几十种规划算法


在这里插入图片描述

1 从进化论说起

从仿生学的角度来看,遗传算法(Genetic Algorithm, GA)是模拟自然界中生物进化过程的一种计算方法。它借鉴了达尔文的进化论中的许多概念,并将这些概念应用到解决优化问题上,例如

  • 基因编码: 在遗传算法中,问题的解被编码成为一串基因序列,类似于生物体的染色体。这种编码方式可以直接映射到生物体的基因结构,每个基因对应于解空间中的一个特定参数或变量。
  • 种群与个体: 遗传算法通过维护一个包含多个个体(解)的种群来模拟自然种群的概念。每个个体都代表了解决问题的一个可能方案,类似于自然界中的个体生物。
  • 适应度评估: 遗传算法中的适应度评估类似于生物体在自然选择过程中的适应度。每个个体根据其解决方案在问题空间中的表现被赋予一个适应度分数,用于评价其优劣。
  • 选择与交叉: 通过选择和交叉操作,遗传算法模拟了生物繁殖过程中的自然选择和基因交换。适应度较高的个体更有可能被选择为父代,并且它们的基因会通过交叉操作进行组合,产生新的后代个体。
  • 变异: 变异操作在遗传算法中引入了个体基因的随机变化,类似于自然界中的基因突变。这种变异可以增加种群的多样性,从而有助于避免陷入局部最优解。

在这里插入图片描述

从这些角度来看,遗传算法可以被视为一种模仿生物进化过程的计算方法,它通过模拟生物体的繁殖、变异和适应度评估等过程,来寻找问题空间中的最优解。这种仿生学的视角不仅帮助我们理解遗传算法的原理,也为我们提供了一种全新的优化问题求解思路。

2 遗传算法基本概念

遗传算法的基本概念如下:

  • M M M:种群数量;
  • x \boldsymbol{x} x:染色体,其对应可行域中的一个可行解,染色体分量 称为基因片段,基因片段是发生交叉、变异的基本单位;
  • f i t ( ⋅ ) fit\left( \cdot \right) fit():个体适应度函数,使目标函数越小的染色体对应的适应度越高;
  • 选择算子:通过适应度从当前种群中筛选较优的染色体集合,并将其特性遗传到下一代种群,实现“优胜劣汰”的进化机制,筛选算法有轮盘赌筛选、精英筛选、排序筛选等,本文采用分层筛选法;
  • 交叉算子:以一定的概率将两个匹配染色体中的部分基因片段互换,产生两个新的染色体,实现“同源染色体交叉互换”的进化特征,提高算法搜索能力,交叉算法有:均匀交叉、单点交叉、多点交叉等,本文采用多点交叉;
  • 变异算子:以一定的概率将染色体的部分基因进行突变,产生新染色体,实现“基因突变”的进化特征,增强种群遗传因子多样性,缓解算法进入局部最优的概率,变异算法有:高斯变异、基本位变异、均匀变异等,本文采用基本位变异。

3 遗传算法流程

遗传算法基本原理如下所示

在这里插入图片描述

4 遗传算法ROS实现

核心代码如下所示

bool GA::plan(const Node& start, const Node& goal, std::vector<Node>& path, std::vector<Node>& expand)
{// variable initializationdouble init_fitness;Genets best_genet;PositionSequence init_positions;std::vector<Genets> genets_swarm;std::vector<Genets> genets_parent;std::vector<Genets> genets_children;// Generate initial position of genets swarminitializePositions(init_positions, start, goal, init_mode_);// genets initializationfor (int i = 0; i < n_genets_; ++i){std::vector<std::pair<int, int>> init_position;if ((i < n_inherited_) && (inherited_genets_.size() == n_inherited_))init_position = inherited_genets_[i].best_pos;elseinit_position = init_positions[i];// Calculate fitnessinit_fitness = calFitnessValue(init_position);if ((i == 0) || (init_fitness > best_genet.fitness)){best_genet.fitness = init_fitness;best_genet.position = init_position;}// Create and add genets objects to containersgenets_swarm.emplace_back(init_position, init_fitness);}// random datastd::random_device rd;std::mt19937 gen(rd());// Iterative optimizationfor (size_t iter = 0; iter < max_iter_; iter++){selection(genets_swarm, genets_parent);genets_children = genets_parent;std::rotate(genets_children.begin(), genets_children.begin() + 1, genets_children.end());std::vector<std::thread> genets_list = std::vector<std::thread>(genets_parent.size());for (size_t i = 0; i < genets_parent.size(); ++i)genets_list[i] = std::thread(&GA::optimizeGenets, this, std::cref(genets_parent[i]), std::ref(genets_children[i]),std::ref(best_genet), i, std::ref(gen), std::ref(expand));for (size_t i = 0; i < genets_parent.size(); ++i)genets_list[i].join();// Copy the elements from genets_parent and genets_children to genets_swarmstd::copy(genets_children.begin(), genets_children.end(), genets_swarm.begin());std::copy(genets_parent.begin(), genets_parent.end(), genets_swarm.begin() + genets_children.size());}// Generating Paths from Optimal Genets...return !path.empty();
}

在这里插入图片描述

完整工程代码请联系下方博主名片获取


🔥 更多精彩专栏

  • 《ROS从入门到精通》
  • 《Pytorch深度学习实战》
  • 《机器学习强基计划》
  • 《运动规划实战精讲》

👇源码获取 · 技术交流 · 抱团学习 · 咨询分享 请联系👇

这篇关于路径规划 | 图解遗传(GA)算法(附ROS C++仿真)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1054358

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

SpringBoot路径映射配置的实现步骤

《SpringBoot路径映射配置的实现步骤》本文介绍了如何在SpringBoot项目中配置路径映射,使得除static目录外的资源可被访问,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一... 目录SpringBoot路径映射补:springboot 配置虚拟路径映射 @RequestMapp

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c

C++归并排序代码实现示例代码

《C++归并排序代码实现示例代码》归并排序将待排序数组分成两个子数组,分别对这两个子数组进行排序,然后将排序好的子数组合并,得到排序后的数组,:本文主要介绍C++归并排序代码实现的相关资料,需要的... 目录1 算法核心思想2 代码实现3 算法时间复杂度1 算法核心思想归并排序是一种高效的排序方式,需要用

浅谈MySQL的容量规划

《浅谈MySQL的容量规划》进行MySQL的容量规划是确保数据库能够在当前和未来的负载下顺利运行的重要步骤,容量规划包括评估当前资源使用情况、预测未来增长、调整配置和硬件资源等,感兴趣的可以了解一下... 目录一、评估当前资源使用情况1.1 磁盘空间使用1.2 内存使用1.3 CPU使用1.4 网络带宽二、

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统