[大模型]Llama-3-8B-Instruct FastApi 部署调用

2024-06-12 06:44

本文主要是介绍[大模型]Llama-3-8B-Instruct FastApi 部署调用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

环境准备

在 Autodl 平台中租赁一个 3090 等 24G 显存的显卡机器,如下图所示镜像选择 PyTorch-->2.1.0-->3.10(ubuntu22.04)-->12.1
接下来打开刚刚租用服务器的 JupyterLab,并且打开其中的终端开始环境配置、模型下载和运行演示。

在这里插入图片描述

pip 换源加速下载并安装依赖包

# 升级pip
python -m pip install --upgrade pip
# 更换 pypi 源加速库的安装
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simplepip install fastapi==0.110.2
pip install uvicorn==0.29.0
pip install requests==2.31.0
pip install modelscope==1.11.0
pip install transformers==4.40.0
pip install accelerate==0.29.3

fastapi0.110.2
langchain
0.1.16
modelscope1.11.0
streamlit
1.33.0
torch2.1.2+cu121
transformers
4.40.0
uvicorn==0.29.0

考虑到部分同学配置环境可能会遇到一些问题,我们在 AutoDL 平台准备了 LLaMA3 的环境镜像,该镜像适用于该仓库的所有部署环境。点击下方链接并直接创建 Autodl 示例即可。
https://www.codewithgpu.com/i/datawhalechina/self-llm/self-llm-LLaMA3

模型下载

使用 modelscope 中的 snapshot_download 函数下载模型,第一个参数为模型名称,参数 cache_dir 为模型的下载路径。

在 /root/autodl-tmp 路径下新建 model_download.py 文件并在其中输入以下内容,粘贴代码后请及时保存文件,如下图所示。并运行 python /root/autodl-tmp/model_download.py 执行下载,模型大小为 15GB,下载模型大概需要 2 分钟。

import torch
from modelscope import snapshot_download, AutoModel, AutoTokenizer
import os
model_dir = snapshot_download('LLM-Research/Meta-Llama-3-8B-Instruct', cache_dir='/root/autodl-tmp', revision='master')

代码准备

在 /root/autodl-tmp 路径下新建 api.py 文件并在其中输入以下内容,粘贴代码后请及时保存文件。下面的代码有很详细的注释,大家如有不理解的地方,欢迎提出 issue。

from fastapi import FastAPI, Request
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
import uvicorn
import json
import datetime
import torch# 设置设备参数
DEVICE = "cuda"  # 使用CUDA
DEVICE_ID = "0"  # CUDA设备ID,如果未设置则为空
CUDA_DEVICE = f"{DEVICE}:{DEVICE_ID}" if DEVICE_ID else DEVICE  # 组合CUDA设备信息# 清理GPU内存函数
def torch_gc():if torch.cuda.is_available():  # 检查是否可用CUDAwith torch.cuda.device(CUDA_DEVICE):  # 指定CUDA设备torch.cuda.empty_cache()  # 清空CUDA缓存torch.cuda.ipc_collect()  # 收集CUDA内存碎片# 构建 chat 模版
def bulid_input(prompt, history=[]):system_format='<|start_header_id|>system<|end_header_id|>\n\n{content}<|eot_id|>'user_format='<|start_header_id|>user<|end_header_id|>\n\n{content}<|eot_id|>'assistant_format='<|start_header_id|>assistant<|end_header_id|>\n\n{content}<|eot_id|>\n'history.append({'role':'user','content':prompt})prompt_str = ''# 拼接历史对话for item in history:if item['role']=='user':prompt_str+=user_format.format(content=item['content'])else:prompt_str+=assistant_format.format(content=item['content'])return prompt_str# 创建FastAPI应用
app = FastAPI()# 处理POST请求的端点
@app.post("/")
async def create_item(request: Request):global model, tokenizer  # 声明全局变量以便在函数内部使用模型和分词器json_post_raw = await request.json()  # 获取POST请求的JSON数据json_post = json.dumps(json_post_raw)  # 将JSON数据转换为字符串json_post_list = json.loads(json_post)  # 将字符串转换为Python对象prompt = json_post_list.get('prompt')  # 获取请求中的提示history = json_post_list.get('history', [])  # 获取请求中的历史记录messages = [# {"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": prompt}]# 调用模型进行对话生成input_str = bulid_input(prompt=prompt, history=history)input_ids = tokenizer.encode(input_str, add_special_tokens=False, return_tensors='pt').cuda()generated_ids = model.generate(input_ids=input_ids, max_new_tokens=512, do_sample=True,top_p=0.9, temperature=0.5, repetition_penalty=1.1, eos_token_id=tokenizer.encode('<|eot_id|>')[0])outputs = generated_ids.tolist()[0][len(input_ids[0]):]response = tokenizer.decode(outputs)response = response.strip().replace('<|eot_id|>', "").replace('<|start_header_id|>assistant<|end_header_id|>\n\n', '').strip() # 解析 chat 模版now = datetime.datetime.now()  # 获取当前时间time = now.strftime("%Y-%m-%d %H:%M:%S")  # 格式化时间为字符串# 构建响应JSONanswer = {"response": response,"status": 200,"time": time}# 构建日志信息log = "[" + time + "] " + '", prompt:"' + prompt + '", response:"' + repr(response) + '"'print(log)  # 打印日志torch_gc()  # 执行GPU内存清理return answer  # 返回响应# 主函数入口
if __name__ == '__main__':# 加载预训练的分词器和模型model_name_or_path = '/root/autodl-tmp/LLM-Research/Meta-Llama-3-8B-Instruct'tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=False)model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto", torch_dtype=torch.bfloat16).cuda()# 启动FastAPI应用# 用6006端口可以将autodl的端口映射到本地,从而在本地使用apiuvicorn.run(app, host='0.0.0.0', port=6006, workers=1)  # 在指定端口和主机上启动应用

Api 部署

在终端输入以下命令启动 api 服务:

cd /root/autodl-tmp
python api.py

加载完毕后出现如下信息说明成功。

在这里插入图片描述

默认部署在 6006 端口,通过 POST 方法进行调用,可以使用 curl 调用,如下所示:

curl -X POST "http://127.0.0.1:6006" \-H 'Content-Type: application/json' \-d '{"prompt": "你好"}'

得到的返回值如下所示:

{"response": "😊 你好!我也很高兴见到你!有什么问题或话题想聊天吗?","status": 200,"time": "2024-04-20 23:11:00"
}

也可以使用 python 中的 requests 库进行调用,如下所示:

import requests
import jsondef get_completion(prompt):headers = {'Content-Type': 'application/json'}data = {"prompt": prompt}response = requests.post(url='http://127.0.0.1:6006', headers=headers, data=json.dumps(data))return response.json()['response']if __name__ == '__main__':print(get_completion('你好'))

在这里插入图片描述

这篇关于[大模型]Llama-3-8B-Instruct FastApi 部署调用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1053471

相关文章

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

Python Web框架Flask、Streamlit、FastAPI示例详解

《PythonWeb框架Flask、Streamlit、FastAPI示例详解》本文对比分析了Flask、Streamlit和FastAPI三大PythonWeb框架:Flask轻量灵活适合传统应用... 目录概述Flask详解Flask简介安装和基础配置核心概念路由和视图模板系统数据库集成实际示例Stre

MySQL 主从复制部署及验证(示例详解)

《MySQL主从复制部署及验证(示例详解)》本文介绍MySQL主从复制部署步骤及学校管理数据库创建脚本,包含表结构设计、示例数据插入和查询语句,用于验证主从同步功能,感兴趣的朋友一起看看吧... 目录mysql 主从复制部署指南部署步骤1.环境准备2. 主服务器配置3. 创建复制用户4. 获取主服务器状态5

golang程序打包成脚本部署到Linux系统方式

《golang程序打包成脚本部署到Linux系统方式》Golang程序通过本地编译(设置GOOS为linux生成无后缀二进制文件),上传至Linux服务器后赋权执行,使用nohup命令实现后台运行,完... 目录本地编译golang程序上传Golang二进制文件到linux服务器总结本地编译Golang程序

如何在Ubuntu 24.04上部署Zabbix 7.0对服务器进行监控

《如何在Ubuntu24.04上部署Zabbix7.0对服务器进行监控》在Ubuntu24.04上部署Zabbix7.0监控阿里云ECS服务器,需配置MariaDB数据库、开放10050/1005... 目录软硬件信息部署步骤步骤 1:安装并配置mariadb步骤 2:安装Zabbix 7.0 Server

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

python如何调用java的jar包

《python如何调用java的jar包》这篇文章主要为大家详细介绍了python如何调用java的jar包,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录一、安装包二、使用步骤三、代码演示四、自己写一个jar包五、打包步骤六、方法补充一、安装包pip3 install

Java调用C#动态库的三种方法详解

《Java调用C#动态库的三种方法详解》在这个多语言编程的时代,Java和C#就像两位才华横溢的舞者,各自在不同的舞台上展现着独特的魅力,然而,当它们携手合作时,又会碰撞出怎样绚丽的火花呢?今天,我们... 目录方法1:C++/CLI搭建桥梁——Java ↔ C# 的“翻译官”步骤1:创建C#类库(.NET

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可