为Nanopi m1交叉编译opencv

2024-06-11 07:04
文章标签 编译 opencv m1 交叉 nanopi

本文主要是介绍为Nanopi m1交叉编译opencv,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

为Nanopi m1交叉编译opencv

一、下载交叉编译器

根据之前的博客进行

二、下载opencv和必要库

sudo apt-get install cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev
git clone https://github.com/opencv/opencv.git
cd opencv

三、进行编译

  1. 创建cmake文件
nano toolchain.cmake
set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)# 指定交叉编译器位置
set(CMAKE_C_COMPILER /opt/nanopi-toolchain/bin/arm-cortexa9-linux-gnueabihf-gcc)
set(CMAKE_CXX_COMPILER /opt/nanopi-toolchain/bin/arm-cortexa9-linux-gnueabihf-g++)# 指定系统根目录(sysroot),这是必需的以便编译器找到正确的库和头文件
set(CMAKE_FIND_ROOT_PATH /opt/nanopi-toolchain/arm-cortexa9-linux-gnueabihf/sys-root)
  1. 创建build文件
mkdir build
cd build
  1. 创建cmake指令
    这里将opencv的编译install输出放到了output文件夹中
cmake -D CMAKE_BUILD_TYPE=Release \-D CMAKE_INSTALL_PREFIX=../output \-D BUILD_SHARED_LIBS=ON \-D WITH_JPEG=ON \-D CMAKE_TOOLCHAIN_FILE=../toolchain.cmake \-D BUILD_EXAMPLES=OFF \-D WITH_IPP=OFF \-D WITH_TBB=OFF \-D BUILD_TESTS=OFF \-D BUILD_PERF_TESTS=OFF \-D ENABLE_NEON=ON \-D ENABLE_VFPV3=ON \-D CMAKE_C_FLAGS="-std=gnu99" \-D CMAKE_CXX_FLAGS="-std=c++14" \-D BUILfD_opencv_python2=OFF \-D BUILD_opencv_python3=OFF \-D BUILD_opencv_java=OFF \-D WITH_OPENCL=OFF \-D WITH_CUDA=OFF \-D WITH_GTK=OFF \-D WITH_VTK=OFF \-D BUILD_opencv_gapi=OFF ..  # 禁用G-API模块
  1. make编译
make -j12
  1. 错误后的处理
    如果编译错误,可通过以下指令删除build中的文件
# cd build
rm -rf *
  1. 编译安装
    由于修改了-D CMAKE_INSTALL_PREFIX=../output,因此编译安装的文件输出到了output文件夹中
sudo make install

四、进行scp传输到M1

  1. 进入output文件夹,使用scp发送这两个文件夹中的内容到m1
cd ../output
scp -r lib/* pi@192.168.10.197:/usr/local/lib/
scp -r include/* pi@192.168.10.197:/usr/local/include/
  1. 问题处理:如果显示没有权限,则可以通过一个temp文件夹进行转存

五、进行测试

  1. 在nano pi m1中写一个test_opencv.cpp文件
#include <opencv2/opencv.hpp>
#include <iostream>int main() {// 替换下面的路径为一个实际的图片文件路径cv::Mat img = cv::imread("/home/pi/head.png", cv::IMREAD_COLOR);if (img.empty()) {std::cerr << "Could not open or find the image." << std::endl;return -1;}// 如果在具有图形界面的系统上运行,使用以下代码显示图片cv::imwrite("/home/pi/output.jpg", img);return 0;
}
  1. 进行编译
g++ test_opencv.cpp -o test_opencv `pkg-config --cflags --libs opencv4`
  1. 测试
./test_opencv # 可以看到生成一个output.jpg文件

六、交叉编译含opencv代码

  1. 主机弄一个标准的cpp工程。包含src、include、build文件夹
  2. CMakeList.txt文件内容如下:
cmake_minimum_required(VERSION 3.10)
project(t_cv)# 设置C++标准
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_STANDARD_REQUIRED ON)# 添加include目录
include_directories(include)# 指定交叉编译工具链
set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)# 设置交叉编译器路径
set(CMAKE_C_COMPILER /opt/nanopi-toolchain/bin/arm-linux-gcc)
set(CMAKE_CXX_COMPILER /opt/nanopi-toolchain/bin/arm-linux-g++)# 查找OpenCV包
find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS})# 添加源代码文件
file(GLOB SOURCES "src/*.cpp")
add_executable(t_cv ${SOURCES})# 链接OpenCV库
target_link_libraries(t_cv ${OpenCV_LIBS})# 设置输出文件夹为 'output',没有用
#set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/output)
#set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_SOURCE_DIR}/output)
  1. main.cpp文件内容如下,一个是拍照片的,一个是保存png的:
#include <opencv2/opencv.hpp>
#include <iostream>int main() {// 打开默认相机cv::VideoCapture cap(1); // 0是默认相机的设备ID。如果不起作用,尝试更换ID。if (!cap.isOpened()) {std::cerr << "Error: Couldn't open the camera.\n";return -1;}cv::Mat frame;std::cout << "Starting camera...\n";// 从相机捕获一帧cap >> frame; // 或者使用 cap.read(frame);if (frame.empty()) {std::cerr << "Error: Couldn't capture an image.\n";return -1;}// 保存图像if (!cv::imwrite("/home/pi/captured_image.png", frame)) {std::cerr << "Error: Couldn't save the image.\n";return -1;}std::cout << "Image saved as /home/pi/captured_image.png\n";// 释放相机cap.release();return 0;
}// #include <opencv2/opencv.hpp>
// #include <iostream>
// using namespace std;
// int main() {
//     // 替换下面的路径为一个实际的图片文件路径
//     cv::Mat img = cv::imread("/home/pi/head.png", cv::IMREAD_COLOR);
//     if (img.empty()) {
//         std::cerr << "Could not open or find the image." << std::endl;
//         return -1;
//     }
//     cout<<"starting"<<endl;//     // 如果在具有图形界面的系统上运行,使用以下代码显示图片
//     bool isWritten = cv::imwrite("/home/pi/output.jpg", img);
//     if (!isWritten) {
//         std::cerr << "Failed to write the image." << std::endl;
//         return -1;
//     } else {
//         cout << "Image written successfully." << endl;
//     }//     cout<<"ok"<<endl;
//     return 0;
// }
  1. 问题:拍照片和输出png图片都没有问题,但是生成jpg文件失败。
    首先尝试在m1中安装如下库
sudo apt-get update
sudo apt-get install libjpeg62

前面的解决思路:上述通过在cmake中添加了如下对jpeg的支持,应该就解决了,上面已经添加了

-D BUILD_SHARED_LIBS=ON \
-D WITH_JPEG=ON \
  1. 问题:交叉编译的主机,显示#include <opencv2/opencv.hpp>错误找不到源。修改方式就是添加对应的源即可
    解决:在如下出问题的地方,电机快速修改,提示修改配置,然后添加对应的路径即可
    在这里插入图片描述
    图形化修改界面的内容如下
    在这里插入图片描述
    手动修改界面的内容如下
    在这里插入图片描述

这篇关于为Nanopi m1交叉编译opencv的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1050470

相关文章

Android NDK版本迭代与FFmpeg交叉编译完全指南

《AndroidNDK版本迭代与FFmpeg交叉编译完全指南》在Android开发中,使用NDK进行原生代码开发是一项常见需求,特别是当我们需要集成FFmpeg这样的多媒体处理库时,本文将深入分析A... 目录一、android NDK版本迭代分界线二、FFmpeg交叉编译关键注意事项三、完整编译脚本示例四

python+OpenCV反投影图像的实现示例详解

《python+OpenCV反投影图像的实现示例详解》:本文主要介绍python+OpenCV反投影图像的实现示例详解,本文通过实例代码图文并茂的形式给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前言二、什么是反投影图像三、反投影图像的概念四、反向投影的工作原理一、利用反向投影backproj

在PyCharm中安装PyTorch、torchvision和OpenCV详解

《在PyCharm中安装PyTorch、torchvision和OpenCV详解》:本文主要介绍在PyCharm中安装PyTorch、torchvision和OpenCV方式,具有很好的参考价值,... 目录PyCharm安装PyTorch、torchvision和OpenCV安装python安装PyTor

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

OpenCV图像形态学的实现

《OpenCV图像形态学的实现》本文主要介绍了OpenCV图像形态学的实现,包括腐蚀、膨胀、开运算、闭运算、梯度运算、顶帽运算和黑帽运算,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起... 目录一、图像形态学简介二、腐蚀(Erosion)1. 原理2. OpenCV 实现三、膨胀China编程(

MySQL中的交叉连接、自然连接和内连接查询详解

《MySQL中的交叉连接、自然连接和内连接查询详解》:本文主要介绍MySQL中的交叉连接、自然连接和内连接查询,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、引入二、交php叉连接(cross join)三、自然连接(naturalandroid join)四

idea maven编译报错Java heap space的解决方法

《ideamaven编译报错Javaheapspace的解决方法》这篇文章主要为大家详细介绍了ideamaven编译报错Javaheapspace的相关解决方法,文中的示例代码讲解详细,感兴趣的... 目录1.增加 Maven 编译的堆内存2. 增加 IntelliJ IDEA 的堆内存3. 优化 Mave

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤