滑动窗口算法:巧妙玩转数据的窗外世界

2024-06-10 15:28

本文主要是介绍滑动窗口算法:巧妙玩转数据的窗外世界,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✨✨✨学习的道路很枯燥,希望我们能并肩走下来!

文章目录

目录

文章目录

前言

一 滑动窗口是什么?

二 相关题目解析

1. 长度最小的子数组

🥳题目解析 

🥳算法原理 

✏️思路1  暴力枚举出所有子数组之和

 ✏️思路2 滑动窗口

2. 无重复字符的最长子串

🥳题目解析 

🥳算法原理 

✏️思路1  暴力枚举 + 哈希表

✏️思路2 滑动窗口优化+哈希表

3. 最大连续1的个数 III

🥳题目解析 

 🥳算法原理 

✏️思路1  暴力枚举 + 计数器       

✏️思路2 滑动窗口优化+计数器

4.将x减到0的最小操作数

🥳题目解析 

  🥳算法原理 

✏️思路 滑动窗口(正难则反

5. 水果成篮

🥳题目解析 

🥳算法原理 

✏️思路 滑动窗口+哈希表

6. 找到字符串中所有字母异位词

🥳题目解析 

🥳算法原理

✏️思路 滑动窗口+哈希表

7. 串联所有单词的字串 

🥳题目解析  

🥳算法原理  

✏️思路 滑动窗口+哈希表​编辑 

8. 最小覆盖字串  

🥳题目解析  

🥳算法原理

✏️思路 滑动窗口+哈希表


前言

本篇详细介绍了滑动窗口的使用,让使用者了解滑动窗口,而不是仅仅停留在表面,更好的模拟,为了更好的使用. 文章可能出现错误,如有请在评论区指正,让我们一起交流,共同进步!


一 滑动窗口是什么?

其实就是我们前文提到的同向指针(前后指针

 一般情况下,我们利用同向双指针来维护一个区间,在移动区间的过程中像一个窗口滑来滑去,因此称为滑动窗口

简而言之,滑动窗口算法在一个特定大小的字符串或数组上进行操作,而不在整个字符串和数组上操作,这样就降低了问题的复杂度,从而也达到降低了循环的嵌套深度其实这里就可以看出来滑动窗口主要应用在数组和字符串上。 

什么时候用滑动窗口?

1. 同向双指针

2. 指针不回退

二 相关题目解析

1. 长度最小的子数组

🥳题目解析 

209. 长度最小的子数组 - 力扣(LeetCode)

这道题要求我们返回符合条件的子数组的最小长度,没有则返回0 

🥳算法原理 

✏️思路1  暴力枚举出所有子数组之和

暴力枚举出所有子数组之和,时间复杂度为O(N2)

class Solution {
public:int minSubArrayLen(int s, vector<int>& nums) {int n = nums.size();if (n == 0) {return 0;}int ans = INT_MAX;for (int i = 0; i < n; i++) {int sum = 0; //利用sum边走边++,使得不用再遍历一遍for (int j = i; j < n; j++) {sum += nums[j];if (sum >= s) {ans = min(ans, j - i + 1);break;}}}return ans == INT_MAX ? 0 : ans;}
};
 ✏️思路2 滑动窗口

我们在暴力解法的过程中发现,有一些情况是没有必要枚举出来的(一定不符合要求 

 

当我们移动到如图上所示时,子数组的值已经大于target,

如果我们继续扩大窗口, 子数组的值一定仍大于target,但子数组的长度不断扩大,与我们的最小子数组长度不符,因此无需枚举后面的情况。

 

代码解析

class Solution {
public:int minSubArrayLen(int target, vector<int>& nums) {int sum = 0, len = INT_MAX; //给最大,方便更新结果for(int left = 0,right =0;right<nums.size();right++){sum+=nums[right]; //进窗口while(sum>=target)//判断{len = min(len,right-left+1); //更新结果sum-=nums[left++]; //出窗口}}return len == INT_MAX ? 0 : len;}
};

2. 无重复字符的最长子串

🥳题目解析 

3. 无重复字符的最长子串 - 力扣(LeetCode)

🥳算法原理 

✏️思路1  暴力枚举 + 哈希表

         固定一个数,从左到右遍历,将每个数放进哈希表,遇到重复的数停止,更新数据,固定数位置右移重复上述操作

✏️思路2 滑动窗口优化+哈希表

 

class Solution {
public:int lengthOfLongestSubstring(string s) {int hax[128]={0}; //利用数组来模拟哈希表int left = 0, right = 0;int ret = 0;while(right<s.size()){hax[s[right]]++;  //进窗口while(hax[s[right]]>1)  //判断重复hax[s[left++]]--; //出窗口ret = max(ret,right-left+1); //更新结果right++; //让下一个元素进入窗口}return ret;}
};

3. 最大连续1的个数 III

🥳题目解析 

1004. 最大连续1的个数 III - 力扣(LeetCode)

 🥳算法原理 

✏️思路1  暴力枚举 + 计数器       
for(int i = 0 ;i<nums.size();i++)
{for(int j = i;j<nums.size();j++){//...zero>k}    
}
✏️思路2 滑动窗口优化+计数器

class Solution {
public:int longestOnes(vector<int>& nums, int k) {int ret = 0;for(int left = 0,right = 0,zero = 0;right<nums.size();right++){if(nums[right] == 0) //进窗口zero++;while(zero>k) //判断{if(nums[left++]==0) //出窗口zero--;}ret = max(ret,right-left+1); //更新结果}return ret;}
};

4.将x减到0的最小操作数

🥳题目解析 

  🥳算法原理 

✏️思路 滑动窗口(正难则反

class Solution {
public:int minOperations(vector<int>& nums, int x) {int sum = 0;for(auto&e : nums)sum+=e;int tmp = 0, len = -1;int target = sum - x;if(target<0)return -1;for(int left = 0 ,right = 0 ;right<nums.size();right++){tmp+=nums[right];while(tmp>target){tmp-=nums[left++];}if(tmp == target)len = max(len,right - left + 1);}if(len == -1)return len;else return nums.size()-len;}
};

5. 水果成篮

904. 水果成篮 - 力扣(LeetCode)

🥳题目解析 

🥳算法原理 

✏️思路 滑动窗口+哈希表

因为题目中提到

  • 1 <= fruits.length <= 105

 因此我们可以用数组来代替哈希表

class Solution {
public:int totalFruit(vector<int>& fruits) {int hash[100001] = {0};//统计窗口内出现了多少种水果int ret = 0;for(int left = 0,right = 0, kinds = 0;right<fruits.size();right++){if(hash[fruits[right]] == 0)kinds++;hash[fruits[right]]++; //进窗口while(kinds >2) //判断{//出窗口hash[fruits[left]]--;if(hash[fruits[left]] == 0)kinds--;left++;}//更新结果ret = max(ret,right - left +1);}return ret;}
};

6. 找到字符串中所有字母异位词

438. 找到字符串中所有字母异位词

🥳题目解析 

🥳算法原理

✏️思路 滑动窗口+哈希表

 

class Solution {
public:bool check(int s1[],int s2[]){for(int i = 0;i<26;i++){if(s1[i]!=s2[i])return false;}return true;}vector<int> findAnagrams(string s, string p) {int hash1[26] = {0};int hash2[26] = {0};vector<int> result;for(int i = 0;i<p.size();i++){hash1[p[i]-'a']++;}for(int left = 0,right = 0;right<s.size();right++){hash2[s[right]-'a']++;if(right-left+1>p.size()){hash2[s[left]-'a']--;left++;}if(check(hash1,hash2))result.push_back(left);}return result;}
};

 这里我们发现我们每次都要频繁的进入check函数进行检查,时间复杂度为26*n

我们可以对检查这一步骤进行优化 

 

class Solution {
public:vector<int> findAnagrams(string s, string p) {int hash1[26] = {0}; //统计字符串p中每个字符出现个数for(auto&e : p) hash1[e-'a']++;int hash2[26] = {0};//统计窗口中每个字符出现个数vector<int> ret;for(int left = 0,right = 0,count = 0;right<s.size();right++) //count窗口中有效字符个数{char in = s[right];if(++hash2[in-'a']<=hash1[in-'a']) count++; //进窗口+维护countif(right - left + 1 >p.size()) //判断{char out = s[left++];if(hash2[out-'a']--<=hash1[out-'a']) count--; //出窗口+维护count}//更新结果if(count == p.size()) ret.push_back(left);}return ret;}
};

7. 串联所有单词的字串 

30. 串联所有单词的子串 - 力扣(LeetCode) 

🥳题目解析  

此题是「438. 找到字符串中所有字母异位词」的进阶版。不同的是第 438 题的元素是字母,而此题的元素是单词。可以用类似的方法的滑动窗口来解这题。 

🥳算法原理  

✏️思路 滑动窗口+哈希表 

class Solution {
public:vector<int> findSubstring(string s, vector<string>& words) {vector<int> ret;unordered_map<string,int> hash1; //保存words里面所有单词的频率for(auto& e : words) hash1[e]++;int len = words[0].size(), n = words.size();for(int i = 0;i < len; i++) //执行len次{unordered_map<string,int> hash2; //保护窗口内单词的频率for(int left = i,right = i, count = 0;right+len<=s.size();right+=len){//进窗口+维护countstring in = s.substr(right,len);if(++hash2[in]<=hash1[in]) count++;//判断if(right-left+1>len*n){//出窗口+维护countstring out = s.substr(left,len);if(hash2[out]--<=hash1[out]) count--;left+=len;}//更新结果if(count == n) ret.push_back(left);}  }return ret;}
};

小细节优化: 

if(++hash2[in]<=hash1[in]) count++;

执行这段代码时,hash1哈希表未必有对应的单词in,这时候编译器会向hash1创建一个in,使得时间复杂度增加

优化后的代码

class Solution {
public:vector<int> findSubstring(string s, vector<string>& words) {vector<int> ret;unordered_map<string,int> hash1; //保存words里面所有单词的频率for(auto& e : words) hash1[e]++;int len = words[0].size(), n = words.size();for(int i = 0;i < len; i++) //执行len次{unordered_map<string,int> hash2; //保护窗口内单词的频率for(int left = i,right = i, count = 0;right+len<=s.size();right+=len){//进窗口+维护countstring in = s.substr(right,len);if(hash1.count(in)&&++hash2[in]<=hash1[in]) count++;//判断if(right-left+1>len*n){//出窗口+维护countstring out = s.substr(left,len);if(hash1.count(out)&&hash2[out]--<=hash1[out]) count--;left+=len;}//更新结果if(count == n) ret.push_back(left);}  }return ret;}
};

8. 最小覆盖字串  

76. 最小覆盖子串 - 力扣(LeetCode)

🥳题目解析  

🥳算法原理

✏️思路 滑动窗口+哈希表

class Solution {
public:string minWindow(string s, string t) {int hash1[128] = {0};int kinds = 0;for(auto& ch : t){if(hash1[ch]==0) kinds++;hash1[ch]++;}int hash2[128] = {0};int minlen = INT_MAX, begin = -1;for(int left = 0,right = 0,count = 0;right<s.size();right++){char in = s[right];if(++hash2[in] == hash1[in]) count++;while(count == kinds){if(right-left+1<minlen){minlen = right-left+1;begin = left;}char out = s[left++];if(hash2[out]-- == hash1[out]) count--;}}if(begin == -1) return "";else return s.substr(begin,minlen);}
};

总结

✨✨✨各位读友,本篇分享到内容是否更好的让你理解滑动窗口算法,如果对你有帮助给个👍赞鼓励一下吧!!
🎉🎉🎉世上没有绝望的处境,只有对处境绝望的人。
感谢每一位一起走到这的伙伴,我们可以一起交流进步!!!一起加油吧!!

这篇关于滑动窗口算法:巧妙玩转数据的窗外世界的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1048545

相关文章

SpringBoot集成EasyExcel实现百万级别的数据导入导出实践指南

《SpringBoot集成EasyExcel实现百万级别的数据导入导出实践指南》本文将基于开源项目springboot-easyexcel-batch进行解析与扩展,手把手教大家如何在SpringBo... 目录项目结构概览核心依赖百万级导出实战场景核心代码效果百万级导入实战场景监听器和Service(核心

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3

pandas数据的合并concat()和merge()方式

《pandas数据的合并concat()和merge()方式》Pandas中concat沿轴合并数据框(行或列),merge基于键连接(内/外/左/右),concat用于纵向或横向拼接,merge用于... 目录concat() 轴向连接合并(1) join='outer',axis=0(2)join='o

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速