3.大模型高效微调PEFT

2024-06-10 08:12
文章标签 高效 模型 微调 peft

本文主要是介绍3.大模型高效微调PEFT,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大模型高效微调(PEFT)技术

预训练模型的背景

  • 预训练与微调:传统的微调方法通常涉及对整个预训练模型的参数进行再训练,以适应特定任务。这虽然有效,但计算成本高,且需要大量的标记数据。
  • 模型结构:像BERT或GPT这样的模型通常包含数亿甚至数十亿个参数,构成一个深层次的Transformer网络。

Before PEFT: in-context learning (prompt)

请添加图片描述

Before PEFT: Hard Prompt

Before PEFT: Hard Prompt for text2image (Made by SD XL)

Before PEFT: Hard Prompt for text2image (Made by SD XL)

Before PEFT: Hard Prompt for text2image (Made by Midjourney)

Before PEFT: Hard Prompt for text2image (Made by DALL·E 3)

Before PEFT: Prompt Template for AutoGPT (Made by LangChain)
请添加图片描述

有更好的方法吗?

请添加图片描述

请添加图片描述

请添加图片描述

Adapter Tuning: 开启大模型PEFT (2019)

Adapter Tuning 是一种相对较新的神经网络微调方法,特别适用于大型预训练模型(如BERT、GPT等)。它在保持预训练模型结构和参数大部分不变的前提下,通过引入额外的小型网络模块(称为"adapters")来调整模型以适应特定的下游任务。

请添加图片描述

Adapter Tuning 的核心原理

  • Adapter模块:Adapter Tuning 在模型的每个层(或特定层)中插入小型的神经网络模块(Adapters)。这些模块相对简单,参数量少。
  • 参数固定:除了这些Adapter模块外,模型的其他所有预训练参数都保持固定不变。

请添加图片描述

Adapter Tuning 的实现

  • 训练Adapter:在微调过程中,只有Adapter模块的参数被更新。这些模块学习从预训练模型的固定表示中提取对特定任务有用的信息。
  • 灵活性:由于Adapters相对较小,它们可以快速地针对不同的任务进行训练和调整。
  • 效率:与传统的全模型微调相比,Adapter Tuning 需要更少的计算资源和训练时间。

应用和优势

  • 任务特定调整:Adapter Tuning 使得模型能够针对特定任务进行有效的调整,而不需要重新训练整个大型模型。
  • 资源节约:由于只训练Adapters,这种方法

这篇关于3.大模型高效微调PEFT的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1047624

相关文章

在Golang中实现定时任务的几种高效方法

《在Golang中实现定时任务的几种高效方法》本文将详细介绍在Golang中实现定时任务的几种高效方法,包括time包中的Ticker和Timer、第三方库cron的使用,以及基于channel和go... 目录背景介绍目的和范围预期读者文档结构概述术语表核心概念与联系故事引入核心概念解释核心概念之间的关系

SpringMVC高效获取JavaBean对象指南

《SpringMVC高效获取JavaBean对象指南》SpringMVC通过数据绑定自动将请求参数映射到JavaBean,支持表单、URL及JSON数据,需用@ModelAttribute、@Requ... 目录Spring MVC 获取 JavaBean 对象指南核心机制:数据绑定实现步骤1. 定义 Ja

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

Python基于微信OCR引擎实现高效图片文字识别

《Python基于微信OCR引擎实现高效图片文字识别》这篇文章主要为大家详细介绍了一款基于微信OCR引擎的图片文字识别桌面应用开发全过程,可以实现从图片拖拽识别到文字提取,感兴趣的小伙伴可以跟随小编一... 目录一、项目概述1.1 开发背景1.2 技术选型1.3 核心优势二、功能详解2.1 核心功能模块2.

基于Python构建一个高效词汇表

《基于Python构建一个高效词汇表》在自然语言处理(NLP)领域,构建高效的词汇表是文本预处理的关键步骤,本文将解析一个使用Python实现的n-gram词频统计工具,感兴趣的可以了解下... 目录一、项目背景与目标1.1 技术需求1.2 核心技术栈二、核心代码解析2.1 数据处理函数2.2 数据处理流程

Python中bisect_left 函数实现高效插入与有序列表管理

《Python中bisect_left函数实现高效插入与有序列表管理》Python的bisect_left函数通过二分查找高效定位有序列表插入位置,与bisect_right的区别在于处理重复元素时... 目录一、bisect_left 基本介绍1.1 函数定义1.2 核心功能二、bisect_left 与

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

Python使用FFmpeg实现高效音频格式转换工具

《Python使用FFmpeg实现高效音频格式转换工具》在数字音频处理领域,音频格式转换是一项基础但至关重要的功能,本文主要为大家介绍了Python如何使用FFmpeg实现强大功能的图形化音频转换工具... 目录概述功能详解软件效果展示主界面布局转换过程截图完成提示开发步骤详解1. 环境准备2. 项目功能结

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

Python Pandas高效处理Excel数据完整指南

《PythonPandas高效处理Excel数据完整指南》在数据驱动的时代,Excel仍是大量企业存储核心数据的工具,Python的Pandas库凭借其向量化计算、内存优化和丰富的数据处理接口,成为... 目录一、环境搭建与数据读取1.1 基础环境配置1.2 数据高效载入技巧二、数据清洗核心战术2.1 缺失