关于MQ的几件小事(六)消息积压在消息队列里怎么办

2024-06-10 07:38

本文主要是介绍关于MQ的几件小事(六)消息积压在消息队列里怎么办,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.大量消息在mq里积压了几个小时了还没解决

场景:几千万条数据在MQ里积压了七八个小时,从下午4点多,积压到了晚上很晚,10点多,11点多。线上故障了,这个时候要不然就是修复consumer的问题,让他恢复消费速度,然后傻傻的等待几个小时消费完毕。这个肯定不行。一个消费者一秒是1000条,一秒3个消费者是3000条,一分钟是18万条,1000多万条。
所以如果你积压了几百万到上千万的数据,即使消费者恢复了,也需要大概1小时的时间才能恢复过来。
解决方案:”
这种时候只能操作临时扩容,以更快的速度去消费数据了。具体操作步骤和思路如下:
①先修复consumer的问题,确保其恢复消费速度,然后将现有consumer都停掉。

②临时建立好原先10倍或者20倍的queue数量(新建一个topic,partition是原来的10倍)。

③然后写一个临时分发消息的consumer程序,这个程序部署上去消费积压的消息,消费之后不做耗时处理,直接均匀轮询写入临时建好分10数量的queue里面。

④紧接着征用10倍的机器来部署consumer,每一批consumer消费一个临时queue的消息。

⑤这种做法相当于临时将queue资源和consumer资源扩大10倍,以正常速度的10倍来消费消息。

⑥等快速消费完了之后,恢复原来的部署架构,重新用原来的consumer机器来消费消息。
kafka的示意图.png

2.消息设置了过期时间,过期就丢了怎么办

假设你用的是rabbitmq,rabbitmq是可以设置过期时间的,就是TTL,如果消息在queue中积压超过一定的时间就会被rabbitmq给清理掉,这个数据就没了。那这就是第二个坑了。这就不是说数据会大量积压在mq里,而是大量的数据会直接搞丢。
解决方案:
这种情况下,实际上没有什么消息挤压,而是丢了大量的消息。所以第一种增加consumer肯定不适用。
这种情况可以采取 “批量重导” 的方案来进行解决。
在流量低峰期(比如夜深人静时),写一个程序,手动去查询丢失的那部分数据,然后将消息重新发送到mq里面,把丢失的数据重新补回来。

3.积压消息长时间没有处理,mq放不下了怎么办

如果走的方式是消息积压在mq里,那么如果你很长时间都没处理掉,此时导致mq都快写满了,咋办?这个还有别的办法吗?
解决方案:
这个就没有办法了,肯定是第一方案执行太慢,这种时候只好采用 “丢弃+批量重导” 的方式来解决了。

首先,临时写个程序,连接到mq里面消费数据,收到消息之后直接将其丢弃,快速消费掉积压的消息,降低MQ的压力,然后走第二种方案,在晚上夜深人静时去手动查询重导丢失的这部分数据。

这篇关于关于MQ的几件小事(六)消息积压在消息队列里怎么办的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1047549

相关文章

Java中常见队列举例详解(非线程安全)

《Java中常见队列举例详解(非线程安全)》队列用于模拟队列这种数据结构,队列通常是指先进先出的容器,:本文主要介绍Java中常见队列(非线程安全)的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一.队列定义 二.常见接口 三.常见实现类3.1 ArrayDeque3.1.1 实现原理3.1.2

C++ RabbitMq消息队列组件详解

《C++RabbitMq消息队列组件详解》:本文主要介绍C++RabbitMq消息队列组件的相关知识,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. RabbitMq介绍2. 安装RabbitMQ3. 安装 RabbitMQ 的 C++客户端库4. A

golang实现延迟队列(delay queue)的两种实现

《golang实现延迟队列(delayqueue)的两种实现》本文主要介绍了golang实现延迟队列(delayqueue)的两种实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目录1 延迟队列:邮件提醒、订单自动取消2 实现2.1 simplChina编程e简单版:go自带的time

SpringCloud整合MQ实现消息总线服务方式

《SpringCloud整合MQ实现消息总线服务方式》:本文主要介绍SpringCloud整合MQ实现消息总线服务方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、背景介绍二、方案实践三、升级版总结一、背景介绍每当修改配置文件内容,如果需要客户端也同步更新,

一文带你搞懂Redis Stream的6种消息处理模式

《一文带你搞懂RedisStream的6种消息处理模式》Redis5.0版本引入的Stream数据类型,为Redis生态带来了强大而灵活的消息队列功能,本文将为大家详细介绍RedisStream的6... 目录1. 简单消费模式(Simple Consumption)基本概念核心命令实现示例使用场景优缺点2

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

Redis消息队列实现异步秒杀功能

《Redis消息队列实现异步秒杀功能》在高并发场景下,为了提高秒杀业务的性能,可将部分工作交给Redis处理,并通过异步方式执行,Redis提供了多种数据结构来实现消息队列,总结三种,本文详细介绍Re... 目录1 Redis消息队列1.1 List 结构1.2 Pub/Sub 模式1.3 Stream 结

SpringKafka错误处理(重试机制与死信队列)

《SpringKafka错误处理(重试机制与死信队列)》SpringKafka提供了全面的错误处理机制,通过灵活的重试策略和死信队列处理,下面就来介绍一下,具有一定的参考价值,感兴趣的可以了解一下... 目录引言一、Spring Kafka错误处理基础二、配置重试机制三、死信队列实现四、特定异常的处理策略五

在Android平台上实现消息推送功能

《在Android平台上实现消息推送功能》随着移动互联网应用的飞速发展,消息推送已成为移动应用中不可或缺的功能,在Android平台上,实现消息推送涉及到服务端的消息发送、客户端的消息接收、通知渠道(... 目录一、项目概述二、相关知识介绍2.1 消息推送的基本原理2.2 Firebase Cloud Me

SpringKafka消息发布之KafkaTemplate与事务支持功能

《SpringKafka消息发布之KafkaTemplate与事务支持功能》通过本文介绍的基本用法、序列化选项、事务支持、错误处理和性能优化技术,开发者可以构建高效可靠的Kafka消息发布系统,事务支... 目录引言一、KafkaTemplate基础二、消息序列化三、事务支持机制四、错误处理与重试五、性能优