【经典算法】LeetCode 222. 完全二叉树的节点个数(Java/C/Python3实现含注释说明,Easy)

本文主要是介绍【经典算法】LeetCode 222. 完全二叉树的节点个数(Java/C/Python3实现含注释说明,Easy),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 作者主页: 🔗进朱者赤的博客

  • 精选专栏:🔗经典算法

  • 作者简介:阿里非典型程序员一枚 ,记录在大厂的打怪升级之路。 一起学习Java、大数据、数据结构算法(公众号同名

  • ❤️觉得文章还不错的话欢迎大家点赞👍➕收藏⭐️➕评论,💬支持博主,记得点个大大的关注,持续更新🤞
    ————————————————-

题目描述

给定一个完全二叉树,计算树的节点个数。完全二叉树的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1~ 2^h 个节点。

原题:LeetCode 222

思路及实现

方式一:递归遍历

思路

递归遍历整棵树,每个节点都返回其子树的大小,最终相加即为整个树的大小。

代码实现

Java版本
// 假设树的节点定义如下
class TreeNode {int val;TreeNode left;TreeNode right;TreeNode(int x) { val = x; }
}public class Solution {public int countNodes(TreeNode root) {if (root == null) return 0;return 1 + countNodes(root.left) + countNodes(root.right);}
}

说明:这是最基本的递归方法,简单易懂但效率不高,因为会遍历整个树。

C语言版本
// 假设树的节点定义如下
struct TreeNode {int val;struct TreeNode *left;struct TreeNode *right;
};int countNodes(struct TreeNode* root) {if (root == NULL) return 0;return 1 + countNodes(root->left) + countNodes(root->right);
}

说明:与Java版本类似,只是语法不同。

Python3版本
# 假设树的节点定义如下
class TreeNode:def __init__(self, val=0, left=None, right=None):self.val = valself.left = leftself.right = rightclass Solution:def countNodes(self, root: TreeNode) -> int:if not root: return 0return 1 + self.countNodes(root.left) + self.countNodes(root.right)

说明:Python版本的实现与Java和C类似。

Golang版本
// 假设树的节点定义如下
type TreeNode struct {Val   intLeft  *TreeNodeRight *TreeNode
}func countNodes(root *TreeNode) int {if root == nil {return 0}return 1 + countNodes(root.Left) + countNodes(root.Right)
}

说明:Golang版本的实现与上述语言类似。

复杂度分析

  • 时间复杂度:O(N),其中N为树的节点个数。每个节点都遍历了一次。
  • 空间复杂度:O(H),其中H为树的高度。递归调用栈的深度最大为树的高度。

方式二:二分查找+递归

思路

利用完全二叉树的性质,先找到树的高度,然后利用二分查找确定左子树或右子树中最后一层满二叉树的节点个数,递归计算剩余部分。

以下是按照给定思路实现的完全二叉树节点数统计的Java、C、Python3和Go语言的代码,以及相应的复杂度分析。

代码实现

Java
class TreeNode {int val;TreeNode left;TreeNode right;TreeNode(int x) { val = x; }
}public class Solution {public int countNodes(TreeNode root) {if (root == null) return 0;int leftHeight = getHeight(root.left);int rightHeight = getHeight(root.right);if (leftHeight == rightHeight) {// 左子树是满二叉树return (1 << leftHeight) + countNodes(root.right);} else {// 左子树不是满二叉树,递归计算左子树return 1 + countNodes(root.left);}}private int getHeight(TreeNode node) {if (node == null) return 0;return 1 + getHeight(node.left);}
}
C
#include <stdio.h>
#include <stdlib.h>typedef struct TreeNode {int val;struct TreeNode *left;struct TreeNode *right;
} TreeNode;int getHeight(TreeNode* node) {if (node == NULL) return 0;return 1 + getHeight(node->left);
}int countNodes(TreeNode* root) {if (root == NULL) return 0;int leftHeight = getHeight(root->left);int rightHeight = getHeight(root->right);if (leftHeight == rightHeight) {return (1 << leftHeight) + countNodes(root->right);} else {return 1 + countNodes(root->left);}
}
Python3
class TreeNode:def __init__(self, x):self.val = xself.left = Noneself.right = Nonedef getHeight(node):if node is None:return 0return 1 + getHeight(node.left)def countNodes(root):if root is None:return 0leftHeight = getHeight(root.left)rightHeight = getHeight(root.right)if leftHeight == rightHeight:return (1 << leftHeight) + countNodes(root.right)else:return 1 + countNodes(root.left)
Go
package mainimport ("fmt""math"
)type TreeNode struct {Val   intLeft  *TreeNodeRight *TreeNode
}func getHeight(node *TreeNode) int {if node == nil {return 0}return 1 + getHeight(node.Left)
}func countNodes(root *TreeNode) int {if root == nil {return 0}leftHeight := getHeight(root.Left)rightHeight := getHeight(root.Right)if leftHeight == rightHeight {return int(math.Pow(2, float64(leftHeight))) + countNodes(root.Right)} else {return 1 + countNodes(root.Left)}
}func main() {// Test code// ...
}

复杂度分析

  • 时间复杂度:O(N log N),其中 N 是树的节点数。在最坏情况下,当树接近满二叉树时,每次递归调用 getHeight 都会遍历树的一部分,直到找到完全二叉树的边界。由于二分查找的性质,递归调用的次数为 O(log N),但每次递归可能需要遍历树的大部分节点,因此总的时间复杂度为 O(N log N)。然而,在平均情况下,由于使用了二分查找,性能会优于最坏情况。

  • 空间复杂度:O(H),其中 H 是树的高度。这是由递归调用栈的深度决定的。在完全二叉树中,H 通常远小于 N(节点数),但在最坏情况下(树接近满二叉树),H 接近于 log N。因此,空间复杂度在最坏情况下为 O(log N)。

总结

以下是针对完全二叉树节点数统计的两种方式的总结:

方式优点缺点时间复杂度空间复杂度
方式一(层次遍历)直观易懂,不依赖特殊性质代码量较大,需要额外的空间存储队列O(N)O(N)(队列空间)
方式二(二分查找+递归)利用完全二叉树的性质,平均性能较好递归调用栈可能较深,最坏情况下时间复杂度较高O(N log N)O(H)(H为树的高度,通常小于N)

相似题目

以下是与完全二叉树节点数统计相似的题目,这些题目可能需要类似的算法思想或者技巧来解决:

相似题目难度链接
105. 从前序与中序遍历序列构造二叉树中等LeetCode 105
106. 从中序与后序遍历序列构造二叉树中等LeetCode 106
110. 平衡二叉树简单LeetCode 110
111. 二叉树的最小深度简单LeetCode 111
112. 路径总和简单LeetCode 112
222. 完全二叉树的节点个数中等LeetCode 222(本题)
543. 二叉树的直径简单LeetCode 543
572. 另一个树的子树中等LeetCode 572
993. 二叉树的堂兄弟节点中等LeetCode 993
104. 二叉树的最大深度简单LeetCode 104

请注意,这些题目可能并不完全与完全二叉树节点数统计具有相同的解题技巧,但它们都涉及到了二叉树的遍历、性质利用、递归、DFS/BFS等常见的算法思想。

欢迎一键三连(关注+点赞+收藏),技术的路上一起加油!!!代码改变世界

  • 关于我:阿里非典型程序员一枚 ,记录在大厂的打怪升级之路。 一起学习Java、大数据、数据结构算法(公众号同名),回复暗号,更能获取学习秘籍和书籍等

  • —⬇️欢迎关注下面的公众号:进朱者赤,认识不一样的技术人。⬇️—

这篇关于【经典算法】LeetCode 222. 完全二叉树的节点个数(Java/C/Python3实现含注释说明,Easy)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1046525

相关文章

一篇文章彻底搞懂macOS如何决定java环境

《一篇文章彻底搞懂macOS如何决定java环境》MacOS作为一个功能强大的操作系统,为开发者提供了丰富的开发工具和框架,下面:本文主要介绍macOS如何决定java环境的相关资料,文中通过代码... 目录方法一:使用 which命令方法二:使用 Java_home工具(Apple 官方推荐)那问题来了,

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Java中的.close()举例详解

《Java中的.close()举例详解》.close()方法只适用于通过window.open()打开的弹出窗口,对于浏览器的主窗口,如果没有得到用户允许是不能关闭的,:本文主要介绍Java中的.... 目录当你遇到以下三种情况时,一定要记得使用 .close():用法作用举例如何判断代码中的 input

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Redis中Set结构使用过程与原理说明

《Redis中Set结构使用过程与原理说明》本文解析了RedisSet数据结构,涵盖其基本操作(如添加、查找)、集合运算(交并差)、底层实现(intset与hashtable自动切换机制)、典型应用场... 目录开篇:从购物车到Redis Set一、Redis Set的基本操作1.1 编程常用命令1.2 集