【经典算法】LeetCode 222. 完全二叉树的节点个数(Java/C/Python3实现含注释说明,Easy)

本文主要是介绍【经典算法】LeetCode 222. 完全二叉树的节点个数(Java/C/Python3实现含注释说明,Easy),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 作者主页: 🔗进朱者赤的博客

  • 精选专栏:🔗经典算法

  • 作者简介:阿里非典型程序员一枚 ,记录在大厂的打怪升级之路。 一起学习Java、大数据、数据结构算法(公众号同名

  • ❤️觉得文章还不错的话欢迎大家点赞👍➕收藏⭐️➕评论,💬支持博主,记得点个大大的关注,持续更新🤞
    ————————————————-

题目描述

给定一个完全二叉树,计算树的节点个数。完全二叉树的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1~ 2^h 个节点。

原题:LeetCode 222

思路及实现

方式一:递归遍历

思路

递归遍历整棵树,每个节点都返回其子树的大小,最终相加即为整个树的大小。

代码实现

Java版本
// 假设树的节点定义如下
class TreeNode {int val;TreeNode left;TreeNode right;TreeNode(int x) { val = x; }
}public class Solution {public int countNodes(TreeNode root) {if (root == null) return 0;return 1 + countNodes(root.left) + countNodes(root.right);}
}

说明:这是最基本的递归方法,简单易懂但效率不高,因为会遍历整个树。

C语言版本
// 假设树的节点定义如下
struct TreeNode {int val;struct TreeNode *left;struct TreeNode *right;
};int countNodes(struct TreeNode* root) {if (root == NULL) return 0;return 1 + countNodes(root->left) + countNodes(root->right);
}

说明:与Java版本类似,只是语法不同。

Python3版本
# 假设树的节点定义如下
class TreeNode:def __init__(self, val=0, left=None, right=None):self.val = valself.left = leftself.right = rightclass Solution:def countNodes(self, root: TreeNode) -> int:if not root: return 0return 1 + self.countNodes(root.left) + self.countNodes(root.right)

说明:Python版本的实现与Java和C类似。

Golang版本
// 假设树的节点定义如下
type TreeNode struct {Val   intLeft  *TreeNodeRight *TreeNode
}func countNodes(root *TreeNode) int {if root == nil {return 0}return 1 + countNodes(root.Left) + countNodes(root.Right)
}

说明:Golang版本的实现与上述语言类似。

复杂度分析

  • 时间复杂度:O(N),其中N为树的节点个数。每个节点都遍历了一次。
  • 空间复杂度:O(H),其中H为树的高度。递归调用栈的深度最大为树的高度。

方式二:二分查找+递归

思路

利用完全二叉树的性质,先找到树的高度,然后利用二分查找确定左子树或右子树中最后一层满二叉树的节点个数,递归计算剩余部分。

以下是按照给定思路实现的完全二叉树节点数统计的Java、C、Python3和Go语言的代码,以及相应的复杂度分析。

代码实现

Java
class TreeNode {int val;TreeNode left;TreeNode right;TreeNode(int x) { val = x; }
}public class Solution {public int countNodes(TreeNode root) {if (root == null) return 0;int leftHeight = getHeight(root.left);int rightHeight = getHeight(root.right);if (leftHeight == rightHeight) {// 左子树是满二叉树return (1 << leftHeight) + countNodes(root.right);} else {// 左子树不是满二叉树,递归计算左子树return 1 + countNodes(root.left);}}private int getHeight(TreeNode node) {if (node == null) return 0;return 1 + getHeight(node.left);}
}
C
#include <stdio.h>
#include <stdlib.h>typedef struct TreeNode {int val;struct TreeNode *left;struct TreeNode *right;
} TreeNode;int getHeight(TreeNode* node) {if (node == NULL) return 0;return 1 + getHeight(node->left);
}int countNodes(TreeNode* root) {if (root == NULL) return 0;int leftHeight = getHeight(root->left);int rightHeight = getHeight(root->right);if (leftHeight == rightHeight) {return (1 << leftHeight) + countNodes(root->right);} else {return 1 + countNodes(root->left);}
}
Python3
class TreeNode:def __init__(self, x):self.val = xself.left = Noneself.right = Nonedef getHeight(node):if node is None:return 0return 1 + getHeight(node.left)def countNodes(root):if root is None:return 0leftHeight = getHeight(root.left)rightHeight = getHeight(root.right)if leftHeight == rightHeight:return (1 << leftHeight) + countNodes(root.right)else:return 1 + countNodes(root.left)
Go
package mainimport ("fmt""math"
)type TreeNode struct {Val   intLeft  *TreeNodeRight *TreeNode
}func getHeight(node *TreeNode) int {if node == nil {return 0}return 1 + getHeight(node.Left)
}func countNodes(root *TreeNode) int {if root == nil {return 0}leftHeight := getHeight(root.Left)rightHeight := getHeight(root.Right)if leftHeight == rightHeight {return int(math.Pow(2, float64(leftHeight))) + countNodes(root.Right)} else {return 1 + countNodes(root.Left)}
}func main() {// Test code// ...
}

复杂度分析

  • 时间复杂度:O(N log N),其中 N 是树的节点数。在最坏情况下,当树接近满二叉树时,每次递归调用 getHeight 都会遍历树的一部分,直到找到完全二叉树的边界。由于二分查找的性质,递归调用的次数为 O(log N),但每次递归可能需要遍历树的大部分节点,因此总的时间复杂度为 O(N log N)。然而,在平均情况下,由于使用了二分查找,性能会优于最坏情况。

  • 空间复杂度:O(H),其中 H 是树的高度。这是由递归调用栈的深度决定的。在完全二叉树中,H 通常远小于 N(节点数),但在最坏情况下(树接近满二叉树),H 接近于 log N。因此,空间复杂度在最坏情况下为 O(log N)。

总结

以下是针对完全二叉树节点数统计的两种方式的总结:

方式优点缺点时间复杂度空间复杂度
方式一(层次遍历)直观易懂,不依赖特殊性质代码量较大,需要额外的空间存储队列O(N)O(N)(队列空间)
方式二(二分查找+递归)利用完全二叉树的性质,平均性能较好递归调用栈可能较深,最坏情况下时间复杂度较高O(N log N)O(H)(H为树的高度,通常小于N)

相似题目

以下是与完全二叉树节点数统计相似的题目,这些题目可能需要类似的算法思想或者技巧来解决:

相似题目难度链接
105. 从前序与中序遍历序列构造二叉树中等LeetCode 105
106. 从中序与后序遍历序列构造二叉树中等LeetCode 106
110. 平衡二叉树简单LeetCode 110
111. 二叉树的最小深度简单LeetCode 111
112. 路径总和简单LeetCode 112
222. 完全二叉树的节点个数中等LeetCode 222(本题)
543. 二叉树的直径简单LeetCode 543
572. 另一个树的子树中等LeetCode 572
993. 二叉树的堂兄弟节点中等LeetCode 993
104. 二叉树的最大深度简单LeetCode 104

请注意,这些题目可能并不完全与完全二叉树节点数统计具有相同的解题技巧,但它们都涉及到了二叉树的遍历、性质利用、递归、DFS/BFS等常见的算法思想。

欢迎一键三连(关注+点赞+收藏),技术的路上一起加油!!!代码改变世界

  • 关于我:阿里非典型程序员一枚 ,记录在大厂的打怪升级之路。 一起学习Java、大数据、数据结构算法(公众号同名),回复暗号,更能获取学习秘籍和书籍等

  • —⬇️欢迎关注下面的公众号:进朱者赤,认识不一样的技术人。⬇️—

这篇关于【经典算法】LeetCode 222. 完全二叉树的节点个数(Java/C/Python3实现含注释说明,Easy)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1046525

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Java 实用工具类Spring 的 AnnotationUtils详解

《Java实用工具类Spring的AnnotationUtils详解》Spring框架提供了一个强大的注解工具类org.springframework.core.annotation.Annot... 目录前言一、AnnotationUtils 的常用方法二、常见应用场景三、与 JDK 原生注解 API 的

Java controller接口出入参时间序列化转换操作方法(两种)

《Javacontroller接口出入参时间序列化转换操作方法(两种)》:本文主要介绍Javacontroller接口出入参时间序列化转换操作方法,本文给大家列举两种简单方法,感兴趣的朋友一起看... 目录方式一、使用注解方式二、统一配置场景:在controller编写的接口,在前后端交互过程中一般都会涉及

Java中的StringBuilder之如何高效构建字符串

《Java中的StringBuilder之如何高效构建字符串》本文将深入浅出地介绍StringBuilder的使用方法、性能优势以及相关字符串处理技术,结合代码示例帮助读者更好地理解和应用,希望对大家... 目录关键点什么是 StringBuilder?为什么需要 StringBuilder?如何使用 St

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

Java并发编程之如何优雅关闭钩子Shutdown Hook

《Java并发编程之如何优雅关闭钩子ShutdownHook》这篇文章主要为大家详细介绍了Java如何实现优雅关闭钩子ShutdownHook,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起... 目录关闭钩子简介关闭钩子应用场景数据库连接实战演示使用关闭钩子的注意事项开源框架中的关闭钩子机制1.

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

Maven中引入 springboot 相关依赖的方式(最新推荐)

《Maven中引入springboot相关依赖的方式(最新推荐)》:本文主要介绍Maven中引入springboot相关依赖的方式(最新推荐),本文给大家介绍的非常详细,对大家的学习或工作具有... 目录Maven中引入 springboot 相关依赖的方式1. 不使用版本管理(不推荐)2、使用版本管理(推

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows