Python3和opencv的人脸识别并显示对应中文姓名完整版(含数据收集,模型训练)

本文主要是介绍Python3和opencv的人脸识别并显示对应中文姓名完整版(含数据收集,模型训练),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

如果你和我一样是个还没入门的python小白,有兴趣体验一下人脸识别。这里人脸识别代码很完整,也很简单,让我们一起试一试吧!

先上美图:

项目文件:

 

1、首先第三方包安装

# opencv 的安装
pip install opencv-python
# pillow的安装,注:pillow为图像处理包。
pip install pillow 
# contrib的安装,用于训练自己的人脸模型的一个OpenCV扩展包
pip instal opencv-contrib-python
# pyttsx3 文字转语音库使用
pip install pyttsx3

2、下载对应人脸识别xml文件并放到项目目录下(haarcascade/haarcascade_frontalface_default.xml):https://download.csdn.net/download/u011477914/12765468

3、创建人脸采集文件FaceDataCollect.py,并创建FaceData文件夹用于存放人脸数据,(注:运行过程中,会提示你输入请输入姓名序号,请从0开始输入,即第一个人的脸的数据为0,第二个人的脸的数据为1,运行一次可收集一张人脸的数据。)

# 采集人脸
import cv2# 调用笔记本内置摄像头,所以参数为0,如果有其他的摄像头可以调整参数为1,2
cap = cv2.VideoCapture(0)
# 加载人脸模型库
face_detector = cv2.CascadeClassifier('haarcascade/haarcascade_frontalface_default.xml')
face_id = input('\n 请输入姓名序号:')
print('\n 初始化面临捕获。看着镜头,等待 ...')
count = 0
# 获取摄像头实时画面
while True:# 读取摄像头当前这一帧的画面  success:True False image:当前这一帧画面success, img = cap.read()if not success:  # ok 是判断你有没有得到数据break# 转为灰度图片gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# 检测人脸faces = face_detector.detectMultiScale(gray, 1.3, 5)if len(faces) > 0:for (x, y, w, h) in faces:# 画出矩形框cv2.rectangle(img, (x, y), (x+w, y+w), (255, 0, 0))count += 1# 保存图像cv2.imwrite("FaceData/User." + str(face_id) + '.' + str(count) + '.jpg', img[y: y + h, x: x + w])cv2.imshow('image', img)# 显示当前捕捉到了多少人脸图片了,这样站在那里被拍摄时心里有个数,不用两眼一抹黑傻等着font = cv2.FONT_HERSHEY_SIMPLEXcv2.putText(img, 'num:%d' % count, (x+w, y+w), font, 1, (255, 0, 255), 4)# 保持画面的持续。k = cv2.waitKey(5)if k == 27:   # 通过esc键退出摄像breakelif count >= 500:  # 得到500个样本后退出摄像break# 关闭摄像头
cap.release()
# 销毁窗口
cv2.destroyAllWindows()

4、创建人脸训练文件FaceTraining.py,并创建FaceTrainer文件夹用于存放训练数据文件

# 人脸数据训练
import numpy as np
from PIL import Image
import os
import cv2# 人脸数据路径
recognizer = cv2.face.LBPHFaceRecognizer_create()
detector = cv2.CascadeClassifier("haarcascade/haarcascade_frontalface_default.xml")def getImagesAndLabels(path):imagePaths = [os.path.join(path, f) for f in os.listdir(path)]  # join函数的作用?faceSamples = []ids = []for imagePath in imagePaths:PIL_img = Image.open(imagePath).convert('L')   # convert it to grayscaleimg_numpy = np.array(PIL_img, 'uint8')id = int(os.path.split(imagePath)[-1].split(".")[1])faces = detector.detectMultiScale(img_numpy)for (x, y, w, h) in faces:faceSamples.append(img_numpy[y:y + h, x: x + w])ids.append(id)return faceSamples, idsprint('Training faces. It will take a few seconds. Wait ...')
faces, ids = getImagesAndLabels('FaceData')
recognizer.train(faces, np.array(ids))recognizer.write(r'FaceTrainer\trainer.yml')
print("{0} faces trained. Exiting Program".format(len(np.unique(ids))))

5、创建人脸识别文件FaceRecognition.py(注:1. names中存储人的名字,若该人序号为0则他的名字在第一位,序号为1则排在第二位,以此类推。)

# 人脸识别
# coding=utf-8
import cv2
import numpy
from PIL import Image, ImageDraw, ImageFont
# 语音说话
import pyttsx3
engine = pyttsx3.init()# 解决cv2.putText绘制中文乱码
def cv2ImgAddText(img2, text, left, top, textColor=(0, 0, 255), textSize=20):if isinstance(img2, numpy.ndarray):  # 判断是否OpenCV图片类型img2 = Image.fromarray(cv2.cvtColor(img2, cv2.COLOR_BGR2RGB))# 创建一个可以在给定图像上绘图的对象draw = ImageDraw.Draw(img2)# 字体的格式fontStyle = ImageFont.truetype(r"C:\WINDOWS\FONTS\MSYH.TTC", textSize, encoding="utf-8")# 绘制文本draw.text((left, top), text, textColor, font=fontStyle)# 转换回OpenCV格式return cv2.cvtColor(numpy.asarray(img2), cv2.COLOR_RGB2BGR)recognizer = cv2.face.LBPHFaceRecognizer_create()
recognizer.read('FaceTrainer/trainer.yml')
cascadePath = "haarcascade/haarcascade_frontalface_default.xml"
faceCascade = cv2.CascadeClassifier(cascadePath)
font = cv2.FONT_HERSHEY_SIMPLEXnum = 0
names = ['尼古拉斯·赵四', '莱昂纳多·小沈阳', '约翰尼·宋小宝', '克里斯蒂安·刘能']
cam = cv2.VideoCapture(0)
minW = 0.1 * cam.get(3)
minH = 0.1 * cam.get(4)while True:ret, img = cam.read()gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)faces = faceCascade.detectMultiScale(gray,scaleFactor=1.2,minNeighbors=5,minSize=(int(minW), int(minH)))for (x, y, w, h) in faces:cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)num, confidence = recognizer.predict(gray[y:y + h, x:x + w])if confidence < 100:name = names[num]# confidence = "{0}%".format(round(100 - confidence))# confidence = format(round(100 - confidence))else:name = "unknown"# confidence = "{0}%".format(round(100 - confidence))# confidence = format(round(100 - confidence))# 解决cv2.putText绘制中文乱码img = cv2ImgAddText(img, name, x + 5, y - 30)# cv2.putText(img, name, (x + 5, y - 5), font, 1, (0, 0, 255), 1) 无法显示中文# cv2.putText(img, str(confidence.encode('utf-8')), (x+5, y+h-5), font, 1, (0, 0, 0), 1)if name == "unknown":engine.say('识别失败')engine.runAndWait()else:engine.say(name + '同学,你好')engine.runAndWait()cv2.imshow('camera', img)k = cv2.waitKey(5)if k == 27:breakcam.release()
cv2.destroyAllWindows()

 

人脸识别部分代码参考:https://www.cnblogs.com/xp12345/p/9818435.html

python 解决cv2.putText绘制中文乱码部分转自:https://blog.csdn.net/ctwy291314/article/details/91492048

这篇关于Python3和opencv的人脸识别并显示对应中文姓名完整版(含数据收集,模型训练)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1044854

相关文章

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient