使用MATLAB的BP神经网络进行数据分类任务(简单版)

2024-06-09 04:44

本文主要是介绍使用MATLAB的BP神经网络进行数据分类任务(简单版),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        BP神经网络,即反向传播(Backpropagation)神经网络,是一种多层前馈神经网络,它通过反向传播算法来更新网络权重。这种网络结构特别适合于分类和回归任务。

MATLAB环境设置

        在开始之前,请确保MATLAB环境已经设置好,并且安装了神经网络工具箱。

        同时,写下基础代码:

% 清空环境变量并关闭警告消息
warning off;
clear;
clc;

数据导入与预处理

        数据是机器学习的核心。在本例中,我们将从一个名为data.xlsx的Excel文件中导入数据。假设数据集中前5列是输入特征,第6列是输出标签。

% 划分训练集和测试集
% 使用随机排列来确保数据的随机性
indices = randperm(10);
% 取前10个数据作为训练集
P_train = data(indices(1:10), 1:5)';
T_train = data(indices(1:10), 6)';
% 计算训练集的大小
numTrainSamples = size(P_train, 2);% 测试集使用相同的随机排列,确保训练集和测试集的一致性
P_test = data(indices(1:10), 1:5)';
T_test = data(indices(1:10), 6)';
% 计算测试集的大小
numTestSamples = size(P_test, 2);

        接下来,我们需要划分数据为训练集和测试集,并对数据进行归一化处理以提高训练效率。

% 数据归一化处理
% 对训练集进行归一化,并保存归一化参数
[P_train_norm, normalizationParams] = mapminmax(P_train, 0, 1);
% 使用训练集的归一化参数对测试集进行归一化
P_test_norm = mapminmax('apply', P_test, normalizationParams);% 将输出数据进行独热编码
T_train_encoded = ind2vec(T_train);
T_test_encoded = ind2vec(T_test);

建立BP神经网络模型

        在MATLAB中,我们可以使用newff函数来快速建立一个BP神经网络模型。这个函数允许我们指定输入、输出和隐藏层的大小。

% 建立神经网络模型
% 使用新的前馈网络函数newff,输入为归一化后的训练集特征,输出为编码后的输出数据
net = newff(P_train_norm, T_train_encoded, [6 6 1]);

设置训练参数

        在训练神经网络之前,我们需要设置一些训练参数,如迭代次数、目标训练误差和学习率。

% 设置训练参数
% 包括训练的迭代次数、训练误差目标和学习率
net.trainParam.epochs = 1000; % 迭代次数
net.trainParam.goal = 1e-6; % 目标训练误差
net.trainParam.lr = 0.01; % 学习率

训练神经网络

        使用train函数对网络进行训练。这个过程可能需要一些时间,具体取决于数据集的大小和网络的复杂性。

% 开始训练
% 使用train函数对网络进行训练
net = train(net, P_train_norm, T_train_encoded);

测试与性能评价

        训练完成后,我们使用测试集来评估模型的性能。我们还将计算训练集和测试集的准确率。

% 进行测试
% 使用sim函数对训练集和测试集进行模拟
T_train_sim = sim(net, P_train_norm);
T_test_sim = sim(net, P_test_norm);% 反归一化处理
% 将模拟结果从独热编码转换回原始类别
T_train_decoded = vec2ind(T_train_sim);
T_test_decoded = vec2ind(T_test_sim);% 性能评价
% 计算训练集和测试集的准确率
trainAccuracy = sum(T_train_decoded == T_train) / numTrainSamples * 100;
testAccuracy = sum(T_test_decoded == T_test) / numTestSamples * 100;% 打印性能评价结果
fprintf('训练集准确率: %.2f%%\n', trainAccuracy);
fprintf('测试集准确率: %.2f%%\n', testAccuracy);

效果展示

这篇关于使用MATLAB的BP神经网络进行数据分类任务(简单版)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1044251

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

LiteFlow轻量级工作流引擎使用示例详解

《LiteFlow轻量级工作流引擎使用示例详解》:本文主要介绍LiteFlow是一个灵活、简洁且轻量的工作流引擎,适合用于中小型项目和微服务架构中的流程编排,本文给大家介绍LiteFlow轻量级工... 目录1. LiteFlow 主要特点2. 工作流定义方式3. LiteFlow 流程示例4. LiteF

使用Python开发一个现代化屏幕取色器

《使用Python开发一个现代化屏幕取色器》在UI设计、网页开发等场景中,颜色拾取是高频需求,:本文主要介绍如何使用Python开发一个现代化屏幕取色器,有需要的小伙伴可以参考一下... 目录一、项目概述二、核心功能解析2.1 实时颜色追踪2.2 智能颜色显示三、效果展示四、实现步骤详解4.1 环境配置4.

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal