使用MATLAB的BP神经网络进行数据分类任务(简单版)

2024-06-09 04:44

本文主要是介绍使用MATLAB的BP神经网络进行数据分类任务(简单版),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        BP神经网络,即反向传播(Backpropagation)神经网络,是一种多层前馈神经网络,它通过反向传播算法来更新网络权重。这种网络结构特别适合于分类和回归任务。

MATLAB环境设置

        在开始之前,请确保MATLAB环境已经设置好,并且安装了神经网络工具箱。

        同时,写下基础代码:

% 清空环境变量并关闭警告消息
warning off;
clear;
clc;

数据导入与预处理

        数据是机器学习的核心。在本例中,我们将从一个名为data.xlsx的Excel文件中导入数据。假设数据集中前5列是输入特征,第6列是输出标签。

% 划分训练集和测试集
% 使用随机排列来确保数据的随机性
indices = randperm(10);
% 取前10个数据作为训练集
P_train = data(indices(1:10), 1:5)';
T_train = data(indices(1:10), 6)';
% 计算训练集的大小
numTrainSamples = size(P_train, 2);% 测试集使用相同的随机排列,确保训练集和测试集的一致性
P_test = data(indices(1:10), 1:5)';
T_test = data(indices(1:10), 6)';
% 计算测试集的大小
numTestSamples = size(P_test, 2);

        接下来,我们需要划分数据为训练集和测试集,并对数据进行归一化处理以提高训练效率。

% 数据归一化处理
% 对训练集进行归一化,并保存归一化参数
[P_train_norm, normalizationParams] = mapminmax(P_train, 0, 1);
% 使用训练集的归一化参数对测试集进行归一化
P_test_norm = mapminmax('apply', P_test, normalizationParams);% 将输出数据进行独热编码
T_train_encoded = ind2vec(T_train);
T_test_encoded = ind2vec(T_test);

建立BP神经网络模型

        在MATLAB中,我们可以使用newff函数来快速建立一个BP神经网络模型。这个函数允许我们指定输入、输出和隐藏层的大小。

% 建立神经网络模型
% 使用新的前馈网络函数newff,输入为归一化后的训练集特征,输出为编码后的输出数据
net = newff(P_train_norm, T_train_encoded, [6 6 1]);

设置训练参数

        在训练神经网络之前,我们需要设置一些训练参数,如迭代次数、目标训练误差和学习率。

% 设置训练参数
% 包括训练的迭代次数、训练误差目标和学习率
net.trainParam.epochs = 1000; % 迭代次数
net.trainParam.goal = 1e-6; % 目标训练误差
net.trainParam.lr = 0.01; % 学习率

训练神经网络

        使用train函数对网络进行训练。这个过程可能需要一些时间,具体取决于数据集的大小和网络的复杂性。

% 开始训练
% 使用train函数对网络进行训练
net = train(net, P_train_norm, T_train_encoded);

测试与性能评价

        训练完成后,我们使用测试集来评估模型的性能。我们还将计算训练集和测试集的准确率。

% 进行测试
% 使用sim函数对训练集和测试集进行模拟
T_train_sim = sim(net, P_train_norm);
T_test_sim = sim(net, P_test_norm);% 反归一化处理
% 将模拟结果从独热编码转换回原始类别
T_train_decoded = vec2ind(T_train_sim);
T_test_decoded = vec2ind(T_test_sim);% 性能评价
% 计算训练集和测试集的准确率
trainAccuracy = sum(T_train_decoded == T_train) / numTrainSamples * 100;
testAccuracy = sum(T_test_decoded == T_test) / numTestSamples * 100;% 打印性能评价结果
fprintf('训练集准确率: %.2f%%\n', trainAccuracy);
fprintf('测试集准确率: %.2f%%\n', testAccuracy);

效果展示

这篇关于使用MATLAB的BP神经网络进行数据分类任务(简单版)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1044251

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符