使用OpenPCDet训练与测试多传感器融合模型BEVFusion,OPenPCdet代码架构介绍

本文主要是介绍使用OpenPCDet训练与测试多传感器融合模型BEVFusion,OPenPCdet代码架构介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

在自动驾驶领域,多传感器融合技术是一种常见的方法,用于提高感知系统的准确性和鲁棒性。其中,BevFusion是一种流行的融合方法,可以将来自不同传感器的数据进行融合,生成具有丰富信息的鸟瞰图(BEV)表示。在本文中,我们将介绍如何使用OpenPCdet框架训练和测试多传感器融合BevFusion

环境搭建与数据准备
  1. 安装OpenPCDet: 确标Python环境,确保安装PyTorch及OpenPCDet。克隆仓库后,执行依赖安装。

    参考:安装、测试和训练OpenPCDet:一篇详尽的指南

  2. nuScenes数据集: 从官方网站下载数据集,包含LiDAR、相机图像、雷达等多模态数据,为训练和评估准备。存放到相应的路径。

​        参考:nuscenes生成数据信息info

模型训练
#单个GPU
python train.py --cfg_file ./cfgs/nuscenes_models/bevfusion.yaml
#多GPU
sh scripts/dist_train.sh 3 --cfg_file ./cfgs/nuscenes_models/bevfusion.yaml
模型测试
python test.py --cfg_file ./cfgs/nuscenes_models/bevfusion.yaml --batch_size 4 --ckpt ../checkpoints_office/cbgs_bevfusion.pth
mAP: 0.5754
mATE: 0.3975
mASE: 0.4431
mAOE: 0.4555
mAVE: 0.4208
mAAE: 0.3252
NDS: 0.5835
Eval time: 2.6sPer-class results:
Object Class    AP    ATE    ASE    AOE    AVE    AAE
car    0.920    0.165    0.157    0.090    0.112    0.068
truck    0.778    0.144    0.149    0.017    0.104    0.011
bus    0.995    0.152    0.069    0.028    0.540    0.395
trailer    0.000    1.000    1.000    1.000    1.000    1.000
construction_vehicle    0.000    1.000    1.000    1.000    1.000    1.000
pedestrian    0.931    0.120    0.252    0.298    0.204    0.126
motorcycle    0.690    0.185    0.256    0.342    0.051    0.000
bicycle    0.535    0.153    0.197    0.324    0.355    0.000
traffic_cone    0.906    0.055    0.351    nan    nan    nan
barrier    0.000    1.000    1.000    1.000    nan    nan
2024-06-07 17:03:17,225   INFO  ----------------Nuscene detection_cvpr_2019 results-----------------
***car error@trans, scale, orient, vel, attr | AP@0.5, 1.0, 2.0, 4.0
0.17, 0.16, 0.09, 0.11, 0.07 | 85.35, 92.91, 94.20, 95.42 | mean AP: 0.9197057440961336
***truck error@trans, scale, orient, vel, attr | AP@0.5, 1.0, 2.0, 4.0
0.14, 0.15, 0.02, 0.10, 0.01 | 75.16, 78.18, 78.18, 79.76 | mean AP: 0.7781960247370747
***construction_vehicle error@trans, scale, orient, vel, attr | AP@0.5, 1.0, 2.0, 4.0
1.00, 1.00, 1.00, 1.00, 1.00 | 0.00, 0.00, 0.00, 0.00 | mean AP: 0.0
***bus error@trans, scale, orient, vel, attr | AP@0.5, 1.0, 2.0, 4.0
0.15, 0.07, 0.03, 0.54, 0.40 | 99.53, 99.53, 99.53, 99.53 | mean AP: 0.9953412532028887
***trailer error@trans, scale, orient, vel, attr | AP@0.5, 1.0, 2.0, 4.0
1.00, 1.00, 1.00, 1.00, 1.00 | 0.00, 0.00, 0.00, 0.00 | mean AP: 0.0
***barrier error@trans, scale, orient, vel, attr | AP@0.5, 1.0, 2.0, 4.0
1.00, 1.00, 1.00, nan, nan | 0.00, 0.00, 0.00, 0.00 | mean AP: 0.0
***motorcycle error@trans, scale, orient, vel, attr | AP@0.5, 1.0, 2.0, 4.0
0.18, 0.26, 0.34, 0.05, 0.00 | 64.87, 68.47, 70.18, 72.33 | mean AP: 0.6896328768856833
***bicycle error@trans, scale, orient, vel, attr | AP@0.5, 1.0, 2.0, 4.0
0.15, 0.20, 0.32, 0.36, 0.00 | 52.81, 52.81, 52.81, 55.62 | mean AP: 0.5350891766510515
***pedestrian error@trans, scale, orient, vel, attr | AP@0.5, 1.0, 2.0, 4.0
0.12, 0.25, 0.30, 0.20, 0.13 | 91.38, 92.03, 93.15, 95.71 | mean AP: 0.9306973397899039
***traffic_cone error@trans, scale, orient, vel, attr | AP@0.5, 1.0, 2.0, 4.0
0.06, 0.35, nan, nan, nan | 90.58, 90.58, 90.58, 90.58 | mean AP: 0.9057559715637864
--------------average performance-------------
trans_err:     0.3975
scale_err:     0.4431
orient_err:     0.4555
vel_err:     0.4208
attr_err:     0.3252
mAP:     0.5754
NDS:     0.5835

代码结构

OpenPCDet 的代码结构清晰,主要由以下几个部分组成:

OpenPCDet
├── cfgs                  # 配置文件目录
├── data                  # 数据处理和加载相关代码
├── pcdet                 # 核心库代码
│   ├── datasets          # 数据集相关代码
│   ├── models            # 模型相关代码
│   ├── ops               # 常用操作实现(如 3D 点云操作)
│   ├── utils             # 工具函数和类
├── tools                 # 训练、测试、评估和可视化的脚本
├── scripts               # 辅助脚本(如多 GPU 训练脚本)
├── README.md             # 项目简介和使用说明

具体组成如何:

cfgs
  • cfgs 目录包含各种模型和数据集的配置文件。这些配置文件定义了模型架构、训练参数、数据处理流程等。配置文件通常采用 YAML 格式,便于阅读和修改。

data

data 目录包含数据处理和加载相关代码。主要包括数据集的转换脚本和数据加载器。不同的数据集(如 KITTI、nuScenes)通常有对应的转换脚本,用于将原始数据转换为 OpenPCDet 可用的格式。

pcdet

pcdet 是核心库目录,包含以下子目录:

datasets

datasets 目录包含各种数据集的实现,包括数据加载、预处理和增强等。每个数据集通常有对应的类来处理数据集特有的格式和要求。

  • data_processor: 包含数据预处理模块,例如点云特征提取、数据增强、数据格式转换等。
  • dataset: 包含数据集类,负责加载和预处理数据集,并生成训练和评估所需的数据批。
  • utils: 包含一些数据集相关的工具函数,例如数据集划分、数据集统计等。

model

models 目录包含各种 3D 目标检测模型的实现。每个模型通常由多个模块组成,如 backbone(骨干网络)、neck(中间层)、head(检测头)等。这些模块可以根据需要进行组合和配置。

  • backbone: 包含骨干网络模块,例如 PointNet、PointNet++、VoxelNet 等,负责提取点云特征。
  • head: 包含头部网络模块,例如 SECOND Head、PointPillar Head 等,负责预测目标框、类别和朝向角等。
  • post_processing: 包含后处理模块,例如 NMS (非极大值抑制) 等,用于筛选和合并目标框。
  • utils: 包含一些模型相关的工具函数,例如损失函数计算、指标计算等。

tools

  • train: 包含模型训练工具,例如训练脚本、训练器类等,负责模型训练流程控制。
  • test: 包含模型评估工具,例如评估脚本、评估器类等,负责模型评估流程控制。
  • visualize: 包含模型可视化工具,例如可视化脚本、可视化器类等,负责模型可视化展示。
  • scripts: 包含一些常用的脚本文件,例如数据集划分脚本、模型训练脚本等。

scripts

  • dataset_converters: 包含数据集转换脚本,例如将原始数据集转换为 OpenPCDet 支持的格式。
  • data_split: 包含数据集划分脚本,例如将数据集划分为训练集、验证集和测试集。
  • train: 包含模型训练脚本,例如启动训练流程、保存训练模型等。
  • test: 包含模型评估脚本,例如启动评估流程、生成评估结果等。

总结

OpenPCDet 的代码结构清晰且模块化,每个部分都承担着不同的功能,协同工作完成 3D 目标检测任务。了解 OpenPCDet 的代码结构有助于更好地理解其工作原理和进行二次开发。

关注我的公众号auto_drive_ai(Ai fighting), 第一时间获取更新内容。

这篇关于使用OpenPCDet训练与测试多传感器融合模型BEVFusion,OPenPCdet代码架构介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1043889

相关文章

Git可视化管理工具(SourceTree)使用操作大全经典

《Git可视化管理工具(SourceTree)使用操作大全经典》本文详细介绍了SourceTree作为Git可视化管理工具的常用操作,包括连接远程仓库、添加SSH密钥、克隆仓库、设置默认项目目录、代码... 目录前言:连接Gitee or github,获取代码:在SourceTree中添加SSH密钥:Cl

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

windows和Linux使用命令行计算文件的MD5值

《windows和Linux使用命令行计算文件的MD5值》在Windows和Linux系统中,您可以使用命令行(终端或命令提示符)来计算文件的MD5值,文章介绍了在Windows和Linux/macO... 目录在Windows上:在linux或MACOS上:总结在Windows上:可以使用certuti

CentOS和Ubuntu系统使用shell脚本创建用户和设置密码

《CentOS和Ubuntu系统使用shell脚本创建用户和设置密码》在Linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设置密码,本文写了一个shell... 在linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows