基于动态阈值的白平衡算法 照片校色

2024-06-08 18:32

本文主要是介绍基于动态阈值的白平衡算法 照片校色,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

话不多说,原理见上一篇博客,结果耶很好,直接贴代码:


/*这个是基于动态阈值的自动白平衡算法做的照片颜色校正的程序*/
/*Automatic White Balance Method*/
/*输入包含照片名字的txt文本,输出加前缀的较色后的照片*/
/*时间:2015.8.24*/
#include <opencv2/core/core.hpp>  
#include <opencv2/highgui/highgui.hpp>  
#include <opencv2/face.hpp>
#include <opencv2/xphoto/white_balance.hpp>
#include <opencv2/xphoto.hpp>
#include <opencv2/imgproc/imgproc.hpp>  
#include <iostream>  
#include <vector>  
using namespace std;
using namespace cv;
double baidianave(Mat frame,int n)
{  int a[256];for (int i=0;i<256;i++){a[i]=0;}double sum=0;double ave;for (int i=0;i<n;i++){int d=frame.at<double>(0,i);a[d]++;}int n0=255;for (int k=255;k>0;k--){sum+=a[k];if (sum>frame.rows*frame.cols/10){break;}n0--;}sum=0;for (int i=n0;i<256;i++){sum+=a[i]*i;}ave=sum/(frame.rows*frame.cols/10);return ave;
}
double baidianave(Mat frame)
{ int a[256];
//cvZero(a);for (int i=0;i<256;i++){a[i]=0;}double sum=0;double ave;for (int i=0;i<frame.rows;i++){for (int j=0;j<frame.cols;j++){int d=(int)frame.at<uchar>(i,j);a[d]++;}}int n0=255;for (int k=255;k>0;k--){sum+=a[k];if (sum>frame.rows*frame.cols/10){break;}n0--;}sum=0;for (int i=n0;i<256;i++){sum+=a[i]*i;}ave=sum/(frame.rows*frame.cols/10);return ave;}int main(int argc, char* argv[])
{if (2 != argc) {cout << "Please enter the image list!" <<endl;return -1;}vector<string>  file_names;FILE *file_list =  fopen(argv[1],"r");char buf[255];memset(&buf,0,sizeof(buf));while(fgets(buf,255,file_list)){if(buf[strlen(buf)-1] == '\n') buf[strlen(buf)-1] = '\0';file_names.push_back(string(buf));}fclose(file_list);int count = file_names.size();for(int  i=0; i<count; i++){string img_nm = file_names[i];string img_mask = "c2" + img_nm;int pos = img_nm.rfind('.');string img_fmt = img_nm.substr(pos+1);if("jpg" != img_fmt){cout << "Unknown format: " << img_fmt << endl;continue;}Mat frame= imread(img_nm,1);// cout<<frame.rows<<"  "<<frame.cols<<endl;// cvShowImage("处理前图像",frame);int heightyiban=frame.rows;int widthyiban=frame.cols;double Mb,Db;//图像分成四部分,每部分Cb的均值和均方差double Mr,Dr;//Cr的均值和均方差	Mat imageYCrCb =  Mat::zeros(frame.size(), CV_8UC3);Mat imageCb = Mat::zeros(frame.size(), CV_8UC1);Mat imageCr = Mat::zeros(frame.size(), CV_8UC1);Mat imageY = Mat::zeros(frame.size(), CV_8UC1);cvtColor(frame,imageYCrCb,CV_BGR2YCrCb); std::vector<cv::Mat>ybr(imageYCrCb.channels());split(imageYCrCb,ybr);Mat imageb=Mat::zeros(frame.size(), CV_8UC1);Mat imagec=Mat::zeros(frame.size(), CV_8UC1);ybr[1].copyTo(imageb);ybr[2].copyTo(imagec);Mat  savg,sfangcha;//全局scalar 变量用来放平均值和方差meanStdDev(ybr[2],savg,sfangcha);Mb=savg.at<double>(0);Db=sfangcha.at<double>(0);//求出第一部分cb的均值和均方差meanStdDev(ybr[1],savg,sfangcha);Mr=savg.at<double>(0);// cout<<"Mr:  "<<Mr[0]<<endl;Dr=sfangcha.at<double>(0);;//求出第一部分cr的均值和均方差// cout<<"Dr:  "<<Dr[0]<<endl;double b,c;if (Mb<0)//计算mb+db*sign(mb){ b=Mb+Db*(-1);}elseb=Mb+Db;if (Mr<0)//计算1.5*mr+dr*sign(mb);{c=1.5*Mr+Dr*(-1);}elsec=1.5*Mr+Dr;double Ymax=baidianave(ybr[0]);//下面是对第一部分进行白点的选择Mat Bbaidian=Mat::zeros(1,6000000,CV_64FC1);Mat Gbaidian=Mat::zeros(1,6000000,CV_64FC1);Mat Rbaidian=Mat::zeros(1,6000000,CV_64FC1);//CvScalar s1;int n1=0;// cout<<"b[0]:   "<<b[0]<<"  c[0]:  "<<c[0]<<endl;for (int i=0;i<heightyiban;i++){for (int j=0;j<widthyiban;j++){if (((ybr[2].at<uchar>(i,j)-b)<(1.5*Db))&&((ybr[1].at<uchar>(i,j)-c)<(1.5*Dr))){double d1=frame.at<Vec3b>(i,j)[0];Bbaidian.at<double>(0,n1)=d1;double d2=frame.at<Vec3b>(i,j)[1];Gbaidian.at<double>(0,n1)=d2;double d3=frame.at<Vec3b>(i,j)[2];Rbaidian.at<double>(0,n1)=d3;n1++;}}}double Bave1=baidianave(Bbaidian,n1);double Gave1=baidianave(Gbaidian,n1);double Rave1=baidianave(Rbaidian,n1);// cout<<"Bave1:  "<<Bave1<<"    Gave1:  "<<Gave1<<"      Rave1:   "<<Rave1<<"  Ymax:  "<<Ymax<<endl;double Bgain1=Ymax/(Bave1);double Ggain1=Ymax/(Gave1);double Rgain1=Ymax/(Rave1);// cout<<Bgain1<<"  "<<Ggain1<<"  "<<Rgain1<<endl; for (int i=0;i<heightyiban;i++){for (int j=0;j<widthyiban;j++){int tb=Bgain1*frame.at<Vec3b>(i,j)[0];int tg=Ggain1*frame.at<Vec3b>(i,j)[1];int tr=Rgain1*frame.at<Vec3b>(i,j)[2];if (tb>255){tb=255;}if (tg>255){tg=255;}if (tr>255){tr=255;}				frame.at<Vec3b>(i,j)[0]=tb;frame.at<Vec3b>(i,j)[1]=tg;frame.at<Vec3b>(i,j)[2]=tr;}}imwrite(img_mask.c_str(),frame);		cout<<"Finish!"<<endl;}return 0;
}


这篇关于基于动态阈值的白平衡算法 照片校色的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1042971

相关文章

SpringBoot实现Kafka动态反序列化的完整代码

《SpringBoot实现Kafka动态反序列化的完整代码》在分布式系统中,Kafka作为高吞吐量的消息队列,常常需要处理来自不同主题(Topic)的异构数据,不同的业务场景可能要求对同一消费者组内的... 目录引言一、问题背景1.1 动态反序列化的需求1.2 常见问题二、动态反序列化的核心方案2.1 ht

golang实现动态路由的项目实践

《golang实现动态路由的项目实践》本文主要介绍了golang实现动态路由项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习... 目录一、动态路由1.结构体(数据库的定义)2.预加载preload3.添加关联的方法一、动态路由1

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Python Selenium动态渲染页面和抓取的使用指南

《PythonSelenium动态渲染页面和抓取的使用指南》在Web数据采集领域,动态渲染页面已成为现代网站的主流形式,本文将从技术原理,环境配置,核心功能系统讲解Selenium在Python动态... 目录一、Selenium技术架构解析二、环境搭建与基础配置1. 组件安装2. 驱动配置3. 基础操作模

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

慢sql提前分析预警和动态sql替换-Mybatis-SQL

《慢sql提前分析预警和动态sql替换-Mybatis-SQL》为防止慢SQL问题而开发的MyBatis组件,该组件能够在开发、测试阶段自动分析SQL语句,并在出现慢SQL问题时通过Ducc配置实现动... 目录背景解决思路开源方案调研设计方案详细设计使用方法1、引入依赖jar包2、配置组件XML3、核心配

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

MySQL中动态生成SQL语句去掉所有字段的空格的操作方法

《MySQL中动态生成SQL语句去掉所有字段的空格的操作方法》在数据库管理过程中,我们常常会遇到需要对表中字段进行清洗和整理的情况,本文将详细介绍如何在MySQL中动态生成SQL语句来去掉所有字段的空... 目录在mysql中动态生成SQL语句去掉所有字段的空格准备工作原理分析动态生成SQL语句在MySQL