13.3 Spark调优-JVM调优,shuffle调优, Reduce OOM

2024-06-07 19:08

本文主要是介绍13.3 Spark调优-JVM调优,shuffle调优, Reduce OOM,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

JVM调优:

Executor JVM堆内存 分为三块 静态资源划分

(60%(RDD以及广播变量存储的位置)+20%(运行内存)+20%(reduce 聚合内存))*90%+10%(JVM自身预留) = JVM堆内存

JVM的gc回收流程(属于运行内存中):

在task中创建出来的对象首先往eden和survior1种存放,survior2是空闲的。当eden和survior1区域放满以后就会触发minor gc(小型垃圾回收),清理掉不再使用的对象(死亡)。

会将存活下来的对象放入survior2中,如果存活下来的对象大于survior2的大小,那么JVM就会通过担保机制将多余的对象直接放入到老年代中。

如果这个时候年轻代的内存不是很大的话就会经常的进行minor gc(小型垃圾回收),频繁的minor gc会导致这段时间内有些存活的对象(多次垃圾回收都没有回收掉,一直在用又不能被释放)频繁的倒来倒去,会导致这些短生命周期的对象(不一定长期使用)每进行一次垃圾回收就会长一岁,年龄过大默认15岁,垃圾回收还是没有回收回去的就会跑到老年代里面去。

就会导致老年代中存放大量的短生命周期的对象,老年代应该存放的是数量比较少并且长期使用的对象,比如数据库连接池。这样的话,老年代就会溢满,触发full gc,因为本来老年代中的对象很少,很少进行full gc因此采取了不太复杂但消耗性能和时间的垃圾回收算法。

不管minor gc还是full gc都会导致JVM的工作线程停止

 

总结:堆内内存不足造成的影响

1,频繁的minor gc

2,老年代大量的短生命周期的对象会导致full gc

3,有了gc 就会影响Spark的性能和运行速度

增加内存或者提高运行内存比例解决频繁gc

还有一种方案:

统一的内存管理:JVM堆内存-300M

运行内存 占剩余内存的50%

存储内存 占剩余内存的50%

运行内存和存储内存可互相借用


Shuffle的调优

1、buffer的大小 32k

2、reduce task拉数据 3s 5次

3、hashShuffle 合并机制

4、每次拉取的数据量

5、reduce 聚合的内存比例

6、bypass 机制

7、spark.shuffle.manager sort 选用哪种shuffle

shuffle file connot find(磁盘小文件找不到的原因)?

Executor挂掉:

堆内内不足 --executor-memory 10G

堆外内存不足 shuffle有数据传输,netty 内部封装的是java NIO,是零拷贝,拷贝到堆外内存中

默认是这个Executor内存的10%

2G * 10% = 200M

如何调整堆外内存?

yarn:

--conf spark.yarn.executor.memoryOverhead=2048

standalone:

--conf spark.executor.memoryOverhead=2048

注意事项:

spark-submit脚本里面,去用--conf的方式,去添加配置

Executor没有挂掉:

建立通信失败:

如何提高建立通信的等待时间

--conf spark.core.connection.ack.wait.timeout=60s

注意事项:

spark-submit脚本里面,去用--conf的方式,去添加配置

数据传输的过程

暂时不知道


reduce oom问题

1,map端的map task计算完成后会将task计算的结果根据分区器的策略写入到磁盘小文件中

2,reduce端聚合的时候,会产生5个拉取数据的子线程,每次总共拉取48M的数据,reduce task来执行计算这些数据,默认reduce task端占20%的执行内存,当执行速度小于拉取速度时就会产生reduce oom

 

解决办法:

1,每次拉取数据从48M减少至24M

2,增加worker中的内存或者聚合比例 spark.shuffle.memoryFraction

这篇关于13.3 Spark调优-JVM调优,shuffle调优, Reduce OOM的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1040037

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

一篇文章彻底搞懂macOS如何决定java环境

《一篇文章彻底搞懂macOS如何决定java环境》MacOS作为一个功能强大的操作系统,为开发者提供了丰富的开发工具和框架,下面:本文主要介绍macOS如何决定java环境的相关资料,文中通过代码... 目录方法一:使用 which命令方法二:使用 Java_home工具(Apple 官方推荐)那问题来了,

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Java中的.close()举例详解

《Java中的.close()举例详解》.close()方法只适用于通过window.open()打开的弹出窗口,对于浏览器的主窗口,如果没有得到用户允许是不能关闭的,:本文主要介绍Java中的.... 目录当你遇到以下三种情况时,一定要记得使用 .close():用法作用举例如何判断代码中的 input

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S