文本相似度算法(余弦定理)

2024-06-07 00:58

本文主要是介绍文本相似度算法(余弦定理),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


       最近由于工作项目,需要判断两个txt文本是否相似,于是开始在网上找资料研究,因为在程序中会把文本转换成String再做比较,所以最开始找到了这篇关于 距离编辑算法 Blog写的非常好,受益匪浅。

       于是我决定把它用到项目中,来判断两个文本的相似度。但后来实际操作发现有一些问题:直接说就是查询一本书中的相似章节花了我7、8分钟;这是我不能接受……

       于是停下来仔细分析发现,这种算法在此项目中不是特别适用,由于要判断一本书中是否有相同章节,所以每两个章节之间都要比较,若一本书书有x章的话,这里需对比x(x-1)/2次;而此算法采用矩阵的方式,计算两个字符串之间的变化步骤,会遍历两个文本中的每一个字符两两比较,可以推断出时间复杂度至少为 document1.length × document2.length,我所比较的章节字数平均在几千~一万字;这样计算实在要了老命。

       想到Lucene中的评分机制,也是算一个相似度的问题,不过它采用的是计算向量间的夹角(余弦公式),在google黑板报中的:数学之美(余弦定理和新闻分类) 也有说明,可以通过余弦定理来判断相似度;于是决定自己动手试试。

       首相选择向量的模型:在以字为向量还是以词为向量的问题上,纠结了一会;后来还是觉得用字,虽然词更为准确,但分词却需要增加额外的复杂度,并且此项目要求速度,准确率可以放低,于是还是选择字为向量。

       然后每个字在章节中出现的次数,便是以此字向量的值。现在我们假设:

       章节1中出现的字为:Z1c1,Z1c2,Z1c3,Z1c4……Z1cn;它们在章节中的个数为:Z1n1,Z1n2,Z1n3……Z1nm

       章节2中出现的字为:Z2c1,Z2c2,Z2c3,Z2c4……Z2cn;它们在章节中的个数为:Z2n1,Z2n2,Z2n3……Z2nm

       其中,Z1c1和Z2c1表示两个文本中同一个字,Z1n1和Z2n1是它们分别对应的个数,

       最后我们的相似度可以这么计算:

       程序实现如下:(若有可优化或更好的实现请不吝赐教)

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
public class CosineSimilarAlgorithm {
     public static double getSimilarity(String doc1, String doc2) {
         if (doc1 != null && doc1.trim().length() > 0 && doc2 != null
                 && doc2.trim().length() > 0 ) {
             
             Map<Integer, int []> AlgorithmMap = new HashMap<Integer, int []>();
             
             //将两个字符串中的中文字符以及出现的总数封装到,AlgorithmMap中
             for ( int i = 0 ; i < doc1.length(); i++) {
                 char d1 = doc1.charAt(i);
                 if (isHanZi(d1)){
                     int charIndex = getGB2312Id(d1);
                     if (charIndex != - 1 ){
                         int [] fq = AlgorithmMap.get(charIndex);
                         if (fq != null && fq.length == 2 ){
                             fq[ 0 ]++;
                         } else {
                             fq = new int [ 2 ];
                             fq[ 0 ] = 1 ;
                             fq[ 1 ] = 0 ;
                             AlgorithmMap.put(charIndex, fq);
                         }
                     }
                 }
             }
             for ( int i = 0 ; i < doc2.length(); i++) {
                 char d2 = doc2.charAt(i);
                 if (isHanZi(d2)){
                     int charIndex = getGB2312Id(d2);
                     if (charIndex != - 1 ){
                         int [] fq = AlgorithmMap.get(charIndex);
                         if (fq != null && fq.length == 2 ){
                             fq[ 1 ]++;
                         } else {
                             fq = new int [ 2 ];
                             fq[ 0 ] = 0 ;
                             fq[ 1 ] = 1 ;
                             AlgorithmMap.put(charIndex, fq);
                         }
                     }
                 }
             }
             
             Iterator<Integer> iterator = AlgorithmMap.keySet().iterator();
             double sqdoc1 = 0 ;
             double sqdoc2 = 0 ;
             double denominator = 0 ;
             while (iterator.hasNext()){
                 int [] c = AlgorithmMap.get(iterator.next());
                 denominator += c[ 0 ]*c[ 1 ];
                 sqdoc1 += c[ 0 ]*c[ 0 ];
                 sqdoc2 += c[ 1 ]*c[ 1 ];
             }
             
             return denominator / Math.sqrt(sqdoc1*sqdoc2);
         } else {
             throw new NullPointerException(
                     " the Document is null or have not cahrs!!" );
         }
     }
     public static boolean isHanZi( char ch) {
         // 判断是否汉字
         return (ch >= 0x4E00 && ch <= 0x9FA5 );
     }
     /**
      * 根据输入的Unicode字符,获取它的GB2312编码或者ascii编码,
      *
      * @param ch
      *            输入的GB2312中文字符或者ASCII字符(128个)
      * @return ch在GB2312中的位置,-1表示该字符不认识
      */
     public static short getGB2312Id( char ch) {
         try {
             byte [] buffer = Character.toString(ch).getBytes( "GB2312" );
             if (buffer.length != 2 ) {
                 // 正常情况下buffer应该是两个字节,否则说明ch不属于GB2312编码,故返回'?',此时说明不认识该字符
                 return - 1 ;
             }
             int b0 = ( int ) (buffer[ 0 ] & 0x0FF ) - 161 ; // 编码从A1开始,因此减去0xA1=161
             int b1 = ( int ) (buffer[ 1 ] & 0x0FF ) - 161 ; // 第一个字符和最后一个字符没有汉字,因此每个区只收16*6-2=94个汉字
             return ( short ) (b0 * 94 + b1);
         } catch (UnsupportedEncodingException e) {
             e.printStackTrace();
         }
         return - 1 ;
     }
}

       程序中做了两小的改进,以加快效率:

       1. 只将汉字作为向量,其他的如标点,数字等符号不处理;2. 在HashMap中存放汉字和其在文本中对于的个数时,先将单个汉字通过GB2312编码转换成数字,再存放。

       最后写了个测试,根据两种不同的算法对比下时间,下面是测试结果:

       余弦定理算法:doc1 与 doc2 相似度为:0.9954971, 耗时:22mm

       距离编辑算法:doc1 与 doc2 相似度为:0.99425095, 耗时:322mm

       可见效率有明显提高,算法复杂度大致为:document1.length + document2.length

这篇关于文本相似度算法(余弦定理)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1037728

相关文章

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

C#TextBox设置提示文本方式(SetHintText)

《C#TextBox设置提示文本方式(SetHintText)》:本文主要介绍C#TextBox设置提示文本方式(SetHintText),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录C#TextBox设置提示文本效果展示核心代码总结C#TextBox设置提示文本效果展示核心代

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

使用Python实现文本转语音(TTS)并播放音频

《使用Python实现文本转语音(TTS)并播放音频》在开发涉及语音交互或需要语音提示的应用时,文本转语音(TTS)技术是一个非常实用的工具,下面我们来看看如何使用gTTS和playsound库将文本... 目录什么是 gTTS 和 playsound安装依赖库实现步骤 1. 导入库2. 定义文本和语言 3

Python实现常用文本内容提取

《Python实现常用文本内容提取》在日常工作和学习中,我们经常需要从PDF、Word文档中提取文本,本文将介绍如何使用Python编写一个文本内容提取工具,有需要的小伙伴可以参考下... 目录一、引言二、文本内容提取的原理三、文本内容提取的设计四、文本内容提取的实现五、完整代码示例一、引言在日常工作和学