【机器学习】必会降维算法之:独立成分分析(ICA)

2024-06-06 14:20

本文主要是介绍【机器学习】必会降维算法之:独立成分分析(ICA),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

独立成分分析(ICA)

  • 1、引言
  • 2、独立成分分析(ICA)
    • 2.0 引言
    • 2.1 定义
    • 2.2 应用场景
    • 2.3 核心原理
    • 2.4 实现方式
    • 2.5 算法公式
    • 2.6 代码示例
  • 3、总结

1、引言

小屌丝:鱼哥,最近胡塞武装很哇塞啊。
小鱼:你什么时候开始关注军事了?
小屌丝:这…还用关注吗? 都上新闻了。
小鱼:嗯,那你知道胡塞武装为什么这么厉害吗?
小屌丝:额… 当然是光脚不怕穿鞋的。
小鱼:… 你可真是…
小屌丝:真是啥?
小鱼:一个字,自己体会
在这里插入图片描述

小屌丝:网友都这么说啊,我这是引用而已。
小鱼:… 看来,你还有很长一段距离要走啊。
小屌丝:那你倒是说说啊,
小鱼:我不说,我不说,我写我的博客了
小屌丝:唉~~ 看来你也不是很了解啊
小鱼:去…
小屌丝:说说嘛,
小鱼:别撒娇, 你特喵的 是个爷们。
小屌丝:你不说,我就这样。

在这里插入图片描述

2、独立成分分析(ICA)

2.0 引言

在机器学习和数据分析领域,降维是一项至关重要的技术。

通过降维,我们可以简化数据的复杂性,去除噪声,并提高模型的性能。

其中,独立成分分析(Independent Component Analysis, ICA)作为一种高级的降维算法,旨在从观测数据中分离出独立的源信号,广泛应用于信号处理、图像处理及金融数据分析等领域。

接下来,就跟着小鱼一起,详细探究独立成分分析(ICA)

2.1 定义

独立成分分析(ICA)是一种用于寻找潜在变量(或称为源信号)的统计和计算方法,这些潜在变量通过线性混合产生观察到的数据。

与主成分分析(PCA)不同,ICA 强调信号的统计独立性,而不仅仅是去相关性。

具体来说,ICA 希望从混合信号中提取出尽可能独立且非高斯的信号。

2.2 应用场景

ICA 在多个领域有广泛的应用,以下是一些典型的应用场景:

  • 信号处理:例如,从混杂的音频信号中分离出单独的声音源,这在「鸡尾酒会问题」中尤为经典。
  • 图像处理:用于提取图像的基本构建块,应用于人脸识别和特征提取。
  • 生物医学信号处理:如从脑电图(EEG)中分离独立的脑信号及去除噪声。
  • 金融:分析金融时间序列,分离出独立的市场因素,为投资决策提供支持。

2.3 核心原理

ICA 的核心思想是将观测到的多维信号表示为多个独立源信号的线性组合。

假设我们有观测信号 ( X ) ( \mathbf{X} ) (X),并且这些信号是未知的独立信号 ( S ) ( \mathbf{S} ) (S) 的线性组合:

[ X = A S ] [ \mathbf{X} = \mathbf{A} \mathbf{S} ] [X=AS]

其中, ( A ) ( \mathbf{A} ) (A) 是一个未知的混合矩阵,目标是通过对 ( X ) (\mathbf{X}) (X)进行操作,分离出独立的信号 ( S ) (\mathbf{S}) (S)

2.4 实现方式

ICA 有多种实现方式,最常见的算法是 FastICA。

FastICA 通过最大化信号的非高斯性来估计独立成分,使用定量标准如 negentropy(负熵)来进行优化。

2.5 算法公式

FastICA 的迭代计算方法可以通过以下公式表示:

  • 中心化:移除数据的均值,使数据零均值化。
  • 白化:将观测信号进行线性变换,使其成为白噪声(各维度独立且方差为1)。
  • 迭代求解独立成分:使用如负熵等准则进行非高斯性最大化。

具体的迭代公式如下: [ w + = E [ X g ( w T X ) ] − E [ g ′ ( w T X ) ] w ] [ \mathbf{w}_{+} = \mathbb{E}[\mathbf{X}g(\mathbf{w}^T \mathbf{X})] - \mathbb{E}[g'(\mathbf{w}^T \mathbf{X})] \mathbf{w} ] [w+=E[Xg(wTX)]E[g(wTX)]w]

其中,

  • ( g ) ( g ) (g) 通常选择为非线性函数,如 ( g ( u ) = tanh ⁡ ( u ) ) ( g(u) = \tanh(u) ) (g(u)=tanh(u))
  • ( w ) ( \mathbf{w} ) (w) 是权重向量,通过迭代求解得到。

2.6 代码示例

# -*- coding:utf-8 -*-
# @Time   : 2024-05-30
# @Author : Carl_DJimport numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import FastICA# 生成随机信号
np.random.seed(0)
n_samples = 2000
time = np.linspace(0, 8, n_samples)s1 = np.sin(2 * time)  # 正弦波
s2 = np.sign(np.sin(3 * time))  # 方波
s3 = np.cumsum(np.random.randn(n_samples))  # 随机步进信号S = np.c_[s1, s2, s3]
S += 0.2 * np.random.normal(size=S.shape)  # 加入噪声
S /= S.std(axis=0)  # 标准化# 混合信号
A = np.array([[1, 1, 1], [0.5, 2, 1.0], [1.5, 1.0, 2.0]])  # 混合矩阵
X = np.dot(S, A.T)  # 混合后的信号# 使用FastICA还原信号
ica = FastICA(n_components=3)
S_ = ica.fit_transform(X)  # 重建信号
A_ = ica.mixing_  # 估计的混合矩阵# 我们可以看到A_的乘法近似为单位矩阵,表明信号已经被很好地分离
assert np.allclose(X, np.dot(S_, A_.T) + ica.mean_)# 绘图
plt.figure()models = [X, S, S_]
names = ['混合信号 (观察信号)','源信号 (实际信号)','重建信号 (ICA)']
colors = ['red', 'steelblue', 'orange']for i, (model, name) in enumerate(zip(models, names), 1):plt.subplot(3, 1, i)plt.title(name)for sig, color in zip(model.T, colors):plt.plot(sig, color=color)plt.tight_layout()
plt.show()

解析

  • 首先、生成了三种不同类型的信号(正弦波、方波和随机步进信号),并将它们混合为观测信号 ( X ) ( X ) (X)
  • 其次、使用FastICA从观测信号 ( X ) ( X ) (X) 中分离出独立成分 ( S_ )。
  • 最后、通过绘图,比较混合信号、实际信号和 ICA 重建后的信号。

在这里插入图片描述

3、总结

独立成分分析(ICA)是一种强大的降维和信号分离方法,广泛应用于各个领域。

通过最大化信号的非高斯性,ICA 能够有效地分离出互相独立的源信号,从而在复杂的混合信号中提取出有用的信息。

我是小鱼

  • CSDN 博客专家
  • 阿里云 专家博主
  • 51CTO博客专家
  • 企业认证金牌面试官
  • 多个名企认证&特邀讲师等
  • 名企签约职场面试培训、职场规划师
  • 多个国内主流技术社区的认证专家博主
  • 多款主流产品(阿里云等)评测一等奖获得者

关注小鱼,学习【机器学习】&【深度学习】领域的知识。

这篇关于【机器学习】必会降维算法之:独立成分分析(ICA)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1036358

相关文章

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499