【机器学习笔记2.5】用Softmax回归做二分类(Tensorflow实现)

2024-06-06 05:58

本文主要是介绍【机器学习笔记2.5】用Softmax回归做二分类(Tensorflow实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Softmax回归和逻辑回归的区别

  在本节中,我们介绍Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签 y y y可以取两个以上的值[1]。当类别数 k = 2 k=2 k=2时,softmax 回归退化为 logistic 回归。

Softmax回归 vs. k个logistic回归

  如果你在开发一个音乐分类的应用,需要对k种类型的音乐进行识别,那么是选择使用 softmax 分类器呢,还是使用 logistic 回归算法建立 k 个独立的二元分类器呢?

  这一选择取决于你的类别之间是否互斥,例如,如果你有四个类别的音乐,分别为:古典音乐、乡村音乐、摇滚乐和爵士乐,那么你可以假设每个训练样本只会被打上一个标签(即:一首歌只能属于这四种音乐类型的其中一种),此时你应该使用类别数 k = 4 的softmax回归。(如果在你的数据集中,有的歌曲不属于以上四类的其中任何一类,那么你可以添加一个“其他类”,并将类别数 k 设为5。)

如果你的四个类别如下:人声音乐、舞曲、影视原声、流行歌曲,那么这些类别之间并不是互斥的。例如:一首歌曲可以来源于影视原声,同时也包含人声 。这种情况下,使用4个二分类的 logistic 回归分类器更为合适。这样,对于每个新的音乐作品 ,我们的算法可以分别判断它是否属于各个类别。

现在我们来看一个计算视觉领域的例子,你的任务是将图像分到三个不同类别中。(i) 假设这三个类别分别是:室内场景、户外城区场景、户外荒野场景。你会使用sofmax回归还是 3个logistic 回归分类器呢? (ii) 现在假设这三个类别分别是室内场景、黑白图片、包含人物的图片,你又会选择 softmax 回归还是多个 logistic 回归分类器呢?

在第一个例子中,三个类别是互斥的,因此更适于选择softmax回归分类器 。而在第二个例子中,建立三个独立的 logistic回归分类器更加合适。

代码示例

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as pltdef loadDataSet(file_path):dataMat = []labelMat = []fr = open(file_path)for line in fr.readlines():lineArr = line.strip().split()dataMat.append([float(lineArr[0]), float(lineArr[1])])labelMat.append(int(lineArr[2]))return dataMat, labelMat# 加载数据
dataMat, labelMat = loadDataSet('testSet.txt')  # 《机器学习实战》逻辑回归中用的数据集
dataMat = np.mat(dataMat).astype(np.float32)
labelMat = np.mat(labelMat).transpose()# 制作one-hot格式的label
onehot_list = []
for i in range(len(labelMat)):onehot = [0, 0]onehot[labelMat[i].item()] = 1onehot_list.append(onehot)
labelMat = np.array(onehot_list).astype(np.float32)class_num = 2
threshold = 1.0e-2x_data = tf.placeholder("float32", [None, 2])
y_data = tf.placeholder("float32", [None, class_num])
weight = tf.Variable(tf.ones([2, class_num]))
bias = tf.Variable(tf.ones([class_num]))
y_model = tf.nn.softmax(tf.matmul(x_data, weight) + bias)loss = tf.reduce_sum(tf.pow((y_model - y_data), 2))
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(loss)
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)step = 0
loss_buf = []
train_num = 70  # 一共就100个样本,拿出70个出来用于训练,剩下的30个用于测试
for _ in range(100):for data, label in zip(dataMat[0:train_num, :], labelMat[0:train_num, :]):label = label.reshape([1, 2])sess.run(train_step, feed_dict={x_data: data, y_data: label})step += 1'''if step % 10 == 0:print(step, sess.run(weight).flatten(), sess.run(bias).flatten())'''loss_val = sess.run(loss, feed_dict={x_data: data, y_data: label})print('loss_val = ', loss_val)loss_buf.append(loss_val)if loss_val <= threshold:flag = 0#print('weight = ', weight.eval(sess))# 测试准确率
correct_prediction = tf.equal(tf.argmax(y_model, 1), tf.argmax(y_data, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print(sess.run(accuracy, feed_dict={x_data: dataMat[train_num+1:100, :], y_data: labelMat[train_num+1:100, :]}))
sess.close()# 画出loss曲线
loss_ndarray = np.array(loss_buf)
loss_size = np.arange(len(loss_ndarray))
plt.plot(loss_size, loss_ndarray, 'b+', label='loss')
plt.show()
print('end')

loss曲线:
enter image description here

疑问:怎样画出Softmax回归得到的分类直线?
答:会提出这样的问题应该是Softmax回归和逻辑回归的概念还没弄清楚。
(me)在Softmax回归中,输出结果是one-hot形式的向量,向量的每一维的输出非0即1,根据Softmax回归的假设模型 h θ ( x ( i ) ) h_{\theta}(x^{(i)}) hθ(x(i))可知,每一维的参数 θ j {\theta}_j θj都不相同,所以也不能像逻辑回归中那样画出一条分类直线了。

参考文献

[1] Softmax回归

这篇关于【机器学习笔记2.5】用Softmax回归做二分类(Tensorflow实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1035276

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too