仅使用python标准库(不使用numpy)写一个小批量梯度下降的线性回归算法

本文主要是介绍仅使用python标准库(不使用numpy)写一个小批量梯度下降的线性回归算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

看到一个有意思的题目:仅使用python的标准库,完成一个小批量梯度下降的线性回归算法

平常使用numpy这样的计算库习惯了,只允许使用标准库还有点不习惯,下面就使用这个过程来写一个。

import random
from typing import List# 生成测试数据
def generate_data(num_samples: int, weights: List[float], bias: float, noise=0.1) -> (List[List[float]], List[float]):X = [[random.uniform(-10, 10) for _ in range(len(weights))] for _ in range(num_samples)]y = [sum(w * x for w, x in zip(weights, x_i)) + bias + random.uniform(-noise, noise) for x_i in X]return X, y# 计算损失
def mse(y_true: List[float], y_pred: List[float]):return 0.5 * sum((yt - yp) for yt, yp in zip(y_true, y_pred)) ** 2# 将矩阵转置
def transpose(mat: List[List[float]]):row, col = len(mat), len(mat[0])# 固定列,访问行result = [[mat[r][c] for r in range(row)] for c in range(col)]return result# 计算矩阵乘法
def matmul(mat: List[List[float]], vec: List[float]):return [sum(r * c for r, c in zip(row, vec)) for row in mat]# 计算梯度
def compute_grad(y_true_batch: List[float], y_pred_batch: List[float], x_batch: List[List[float]]):batch_size = len(y_true_batch)residual = [yt - yp for yt, yp in zip(y_true_batch, y_pred_batch)]# 根据 y = x @ w + b# grad_w = -x.T @ residualgrad_w = matmul(transpose(x_batch), residual)grad_w = [-gw / batch_size for gw in grad_w]grad_b = -sum(residual) / batch_size# grad_w: List[float]# grad_b: floatreturn grad_w, grad_b# 开启训练
def train():lr = 0.01epochs = 50batch_size = 16dim_feat = 3num_samples = 500weights = [random.random() * 0.1 for _ in range(dim_feat)]bias = random.random() * 0.1print('original params')print('w:', weights)print('b:', bias)X, y = generate_data(num_samples, weights, bias, noise=0.1)for epoch in range(epochs):for i in range(0, num_samples, batch_size):x_batch = X[i:i+batch_size]y_batch = y[i:i+batch_size]y_pred = [item + bias for item in matmul(x_batch, weights)]loss = mse(y_batch, y_pred)grad_w, grad_b = compute_grad(y_batch, y_pred, x_batch)weights = [w - lr * gw for w, gw in zip(weights, grad_w)]bias -= lr * grad_bprint(f'Epoch: {epoch + 1}, Loss = {loss:.3f}')print('trained params')print('w:', weights)print('b:', bias)train()

输出结果如下

original params
w: [0.04845598598148951, 0.007741816562531545, 0.02436678108587098]
b: 0.01644073086522535
Epoch: 1, Loss = 0.000
Epoch: 2, Loss = 0.000
Epoch: 3, Loss = 0.000
Epoch: 4, Loss = 0.000
Epoch: 5, Loss = 0.000
Epoch: 6, Loss = 0.000
Epoch: 7, Loss = 0.000
Epoch: 8, Loss = 0.000
Epoch: 9, Loss = 0.000
Epoch: 10, Loss = 0.000
Epoch: 11, Loss = 0.000
Epoch: 12, Loss = 0.000
Epoch: 13, Loss = 0.000
Epoch: 14, Loss = 0.000
Epoch: 15, Loss = 0.000
Epoch: 16, Loss = 0.000
Epoch: 17, Loss = 0.000
Epoch: 18, Loss = 0.000
Epoch: 19, Loss = 0.000
Epoch: 20, Loss = 0.000
Epoch: 21, Loss = 0.000
Epoch: 22, Loss = 0.000
Epoch: 23, Loss = 0.000
Epoch: 24, Loss = 0.000
Epoch: 25, Loss = 0.000
Epoch: 26, Loss = 0.000
Epoch: 27, Loss = 0.000
Epoch: 28, Loss = 0.000
Epoch: 29, Loss = 0.000
Epoch: 30, Loss = 0.000
Epoch: 31, Loss = 0.000
Epoch: 32, Loss = 0.000
Epoch: 33, Loss = 0.000
Epoch: 34, Loss = 0.000
Epoch: 35, Loss = 0.000
Epoch: 36, Loss = 0.000
Epoch: 37, Loss = 0.000
Epoch: 38, Loss = 0.000
Epoch: 39, Loss = 0.000
Epoch: 40, Loss = 0.000
Epoch: 41, Loss = 0.000
Epoch: 42, Loss = 0.000
Epoch: 43, Loss = 0.000
Epoch: 44, Loss = 0.000
Epoch: 45, Loss = 0.000
Epoch: 46, Loss = 0.000
Epoch: 47, Loss = 0.000
Epoch: 48, Loss = 0.000
Epoch: 49, Loss = 0.000
Epoch: 50, Loss = 0.000
trained params
w: [0.05073234817652038, 0.007306286342947243, 0.023218625946243507]
b: 0.016648404245261664

可以看到,结果还是不错的

这篇关于仅使用python标准库(不使用numpy)写一个小批量梯度下降的线性回归算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1034621

相关文章

基于Python开发Windows屏幕控制工具

《基于Python开发Windows屏幕控制工具》在数字化办公时代,屏幕管理已成为提升工作效率和保护眼睛健康的重要环节,本文将分享一个基于Python和PySide6开发的Windows屏幕控制工具,... 目录概述功能亮点界面展示实现步骤详解1. 环境准备2. 亮度控制模块3. 息屏功能实现4. 息屏时间

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

nginx启动命令和默认配置文件的使用

《nginx启动命令和默认配置文件的使用》:本文主要介绍nginx启动命令和默认配置文件的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录常见命令nginx.conf配置文件location匹配规则图片服务器总结常见命令# 默认配置文件启动./nginx