【一百零五】【算法分析与设计】分解质因数,952. 按公因数计算最大组件大小,204. 计数质数,分解质因数,埃式筛

本文主要是介绍【一百零五】【算法分析与设计】分解质因数,952. 按公因数计算最大组件大小,204. 计数质数,分解质因数,埃式筛,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

分解质因数

题目:分解质因数

题目描述

给定一个正整数 n,编写一个程序将其分解为质因数,并按从小到大的顺序输出这些质因数。

输入格式

一个正整数 n,其中 n 的范围是 1 <= n <= 10^18

输出格式

按从小到大的顺序输出 n 的质因数,每个质因数占一行。

输入示例

4012100

输出示例

2
5
53
757

提示

程序需要处理大整数,因此使用 long long 类型。

质因数应该按从小到大的顺序输出。

每个质因数只输出一次,即使一个质因数在 n 中出现多次。

一个任意的正整数 n 可以写成质因数的乘积形式: n = p 1 k 1 × p 2 k 2 × ⋯ × p m k m n=p1^{k1}×p2^{k2}×⋯×pm^{km} n=p1k1×p2k2××pmkm

其中, p 1 , p 2 , … , p p1,p2,…,p p1,p2,,p 是质数, k 1 , k 2 , … , k k1,k2,…,k k1,k2,,k 是对应的正整数指数。这个表示法称为整数的质因数分解。

2,3是最小的两个质数,用for循环从2开始遍历,一开始 t e m p = p 1 k 1 × p 2 k 2 × ⋯ × p m k m temp=p1^{k1}×p2^{k2}×⋯×pm^{km} temp=p1k1×p2k2××pmkm

每次遇到的temp%i==0,此时i表示的是其中一个质因数。

最开始的temp%i0,i2,i确实是质因数,接着把temp中有关2的因子全部除掉,接着循环。

如果temp%i==0,那么i一定是temp的质因子,首先i一定是temp的因子,那为什么是质因子呢?

如果i不是质数,说明比i小的一个数k是i的因子,那么之前i一定遍历过k,并且temp中把k的因子全部去掉,temp%i一定不等于0.

正是因为temp每次去掉所有的质因子,所以temp%i==0成立i一定是temp的质因子.

#include<bits/stdc++.h> // 包含所有标准库头文件
using namespace std;#define int long long // 定义 int 为 long long 类型,方便处理大整数
#define _(i,a,b) for(int i=a;i<=b;i++) // 定义从 a 到 b 的循环
#define _1(i,a,b) for(int i=a;i>=b;i--) // 定义从 a 到 b 的反向循环int n; // 定义全局变量 n
// 输入: 4012100
// 输出: 2, 5, 53, 757
vector<int> ret; // 用于存储质因数的向量
void solve() {ret.clear(); // 清空存储质因数的向量int temp = n; // 临时变量 temp 用于保存 n 的值_(i, 2, n) { // 从 2 开始遍历到 nif (i * i > temp) break; // 如果 i 的平方大于 temp,跳出循环if (temp % i == 0) { // 如果 temp 能被 i 整除ret.push_back(i); // 将 i 存入结果向量中while (!(temp % i != 0)) { // 当 temp 能被 i 整除时temp /= i; // 将 temp 除以 i}}}if (temp != 1) ret.push_back(temp); // 如果 temp 不等于 1,将 temp 存入结果向量for (auto& x : ret) cout << x << endl; // 输出结果向量中的每个质因数
}
signed main() {cin >> n; // 输入 nsolve(); // 调用求解函数
}

952. 按公因数计算最大组件大小

给定一个由不同正整数的组成的非空数组 nums ,考虑下面的图:

  • nums.length 个节点,按从 nums[0]nums[nums.length - 1] 标记;

  • 只有当 nums[i]nums[j] 共用一个大于 1 的公因数时,nums[i]nums[j]之间才有一条边。

返回 图中最大连通组件的大小

示例 1:

在这里插入图片描述

输入: nums = [4,6,15,35] 输出: 4

示例 2:

在这里插入图片描述

输入: nums = [20,50,9,63] 输出: 2

示例 3:

在这里插入图片描述

输入: nums = [2,3,6,7,4,12,21,39] 输出: 8

提示:

  • 1 <= nums.length <= 2 * 10(4)

  • 1 <= nums[i] <= 10(5)

  • nums 中所有值都 不同

对于每一个数,我们可以分解质因数得到他的每一个质因数.

可以用map存储第一次拥有某个质因数的元素下标.

遍历nums数组,对于i位置元素,分解他的质因数,然后把i元素和他的质因数第一次出现的元素合并到一个集合里面.

并查集.

在这里插入图片描述

#define _(i, a, b) for (int i = a; i <= b; i++) // 定义一个从 a 到 b 的循环宏
#define _1(i, a, b) for (int i = a; i >= b; i--) // 定义一个从 a 到 b 的反向循环宏class Solution {
public:vector<int> nums; // 存储输入数组int ret; // 存储结果,即最大连通组件的大小vector<int> father; // 并查集的父节点数组vector<int> sizee; // 并查集的大小数组map<int, int> yinzi_index; // 存储质因数及其首次出现的索引int n; // 存储输入数组的长度// 并查集的查找函数int findd(int i) {if (father[i] != i) // 如果当前节点不是其自身的父节点father[i] = findd(father[i]); // 递归查找其父节点,并进行路径压缩return father[i]; // 返回父节点}// 并查集的合并函数//并查集的合并函数,维护sizee和father数据,先计算x和y的代表节点下标,这样sizee和father谁先谁后都无所谓了.//重要的是如果fx!=fy才需要维护sizeevoid unionn(int x, int y) {int fx = findd(x); // 查找 x 的父节点int fy = findd(y); // 查找 y 的父节点if (fx != fy) // 如果 x 和 y 的父节点不同sizee[fy] += sizee[fx]; // 合并集合,并更新集合大小father[fx] = father[fy]; // 将 x 的父节点指向 y 的父节点}// 核心解决函数void solve() {ret = 1; // 初始化结果为 1n = nums.size(); // 获取输入数组的长度yinzi_index.clear(); // 清空质因数索引的映射表father.assign(n, 0), sizee.assign(n, 1); // 初始化并查集_(i, 0, n - 1) { father[i] = i; } // 将每个节点的父节点指向其自身// 遍历输入数组_(i, 0, n - 1) {//利用分解质因子的思维获取所有的质因子int temp = nums[i]; // 获取当前元素_(j, 2, nums[i]) { // 从 2 开始遍历到当前元素if (j * j > temp) // 如果 j 的平方大于当前元素break; // 跳出循环if (temp % j == 0) { // 如果 j 是当前元素的因子//对于i位置的元素,j是i的一个质因子if (yinzi_index.count(j)) { // 如果 j 已经存在于质因数映射表中//如果之前j质因子出现过,找到第一次出现的下标,然后合并int index = yinzi_index[j]; // 获取 j 第一次出现的索引unionn(index, i); // 合并当前元素和 j 第一次出现的元素ret = max(ret, sizee[findd(i)]); // 更新最大连通组件的大小} else {//如果是第一次出现,那么就没有需要合并的元素.yinzi_index[j] = i; // 将 j 的首次出现索引设置为当前索引}//分解质因数需要把确定的质因数全部去掉while (!(temp % j != 0)) { // 将当前元素中所有 j 的因子去掉temp /= j;}}}//对于i位置元素,如果temp!=1说明temp也是i的质因数,这一点不要忘记了.if (temp != 1) { // 如果剩余部分不是 1,说明 temp 也是一个质因数if (yinzi_index.count(temp)) { // 如果 temp 已经存在于质因数映射表中int index = yinzi_index[temp]; // 获取 temp 第一次出现的索引unionn(index, i); // 合并当前元素和 temp 第一次出现的元素ret = max(ret, sizee[findd(i)]); // 更新最大连通组件的大小} else {yinzi_index[temp] = i; // 将 temp 的首次出现索引设置为当前索引}}}}// 主函数,计算图中最大连通组件的大小int largestComponentSize(vector<int>& _nums) {ios::sync_with_stdio(0), cin.tie(0), cout.tie(0); // 优化输入输出nums = _nums; // 将输入数组赋值给成员变量solve(); // 调用求解函数return ret; // 返回结果}
};

204. 计数质数

给定整数 n ,返回 所有小于非负整数 n 的质数的数量

示例 1:

输入: n = 10 输出: 4 解释: 小于 10 的质数一共有 4 个, 它们是 2, 3, 5, 7 。

示例 2:

输入: n = 0 输出: 0

示例 3:

输入: n = 1 输出 :0

提示:

  • 0 <= n <= 5 * 10(6)

for循环从2开始遍历,保证每一次i都可以判断是否是n的质因子.

第一次遇到的是质因子,然后把i所有的倍数设置为不是质数.

剪枝,如果当前i不是质数,那么i的倍数一定被设置完了.直接continue.

class Solution {
public:int ret; // 存储质数的数量vector<bool> visited; // 标记数组,用于标记非质数int n; // 存储给定的上限数 nvoid solve() {visited.assign(n, false); // 初始化标记数组,初始时假设所有数都是质数for(int i = 2; i < n; i++) { // 从 2 开始遍历到 n-1if (!visited[i]) { // 如果当前数 i 没有被标记为非质数ret++; // 说明 i 是质数,计数器增加for (int j = i * 2; j < n; j += i) { // 标记所有 i 的倍数为非质数visited[j] = true; // 标记 j 为非质数}}}}int countPrimes(int _n) {ios::sync_with_stdio(0), cout.tie(0), cin.tie(0); // 优化输入输出n = _n; // 将输入的 n 赋值给成员变量 nsolve(); // 调用求解函数return ret; // 返回质数的数量}
};

结尾

最后,感谢您阅读我的文章,希望这些内容能够对您有所启发和帮助。如果您有任何问题或想要分享您的观点,请随时在评论区留言。

同时,不要忘记订阅我的博客以获取更多有趣的内容。在未来的文章中,我将继续探讨这个话题的不同方面,为您呈现更多深度和见解。

谢谢您的支持,期待与您在下一篇文章中再次相遇!

这篇关于【一百零五】【算法分析与设计】分解质因数,952. 按公因数计算最大组件大小,204. 计数质数,分解质因数,埃式筛的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1033433

相关文章

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

Java程序进程起来了但是不打印日志的原因分析

《Java程序进程起来了但是不打印日志的原因分析》:本文主要介绍Java程序进程起来了但是不打印日志的原因分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java程序进程起来了但是不打印日志的原因1、日志配置问题2、日志文件权限问题3、日志文件路径问题4、程序

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

Vue3组件中getCurrentInstance()获取App实例,但是返回null的解决方案

《Vue3组件中getCurrentInstance()获取App实例,但是返回null的解决方案》:本文主要介绍Vue3组件中getCurrentInstance()获取App实例,但是返回nu... 目录vue3组件中getCurrentInstajavascriptnce()获取App实例,但是返回n

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

SpringQuartz定时任务核心组件JobDetail与Trigger配置

《SpringQuartz定时任务核心组件JobDetail与Trigger配置》Spring框架与Quartz调度器的集成提供了强大而灵活的定时任务解决方案,本文主要介绍了SpringQuartz定... 目录引言一、Spring Quartz基础架构1.1 核心组件概述1.2 Spring集成优势二、J

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

Pyserial设置缓冲区大小失败的问题解决

《Pyserial设置缓冲区大小失败的问题解决》本文主要介绍了Pyserial设置缓冲区大小失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录问题描述原因分析解决方案问题描述使用set_buffer_size()设置缓冲区大小后,buf

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n