【noip】解方程 秦九韶算法

2024-06-04 22:32

本文主要是介绍【noip】解方程 秦九韶算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

解方程

描述

已知多项式方程:
a0+a1x1+a2x2+an1xn1+anxn=0
求这个方程在[1, m]内的整数解(n 和 m 均为正整数)。

输入格式

输入共 n+2 行。
第一行包含 2 个整数 n、m,每两个整数之间用一个空格隔开。
接下来的 n+1 行每行包含一个整数,依次为 a0,a1,a2,...,an

输出格式

第一行输出方程在[1, m]内的整数解的个数。
接下来每行一个整数,按照从小到大的顺序依次输出方程在[1, m]内的一个整数解。

样例输入1

2 10
1
-2
1

样例输出1

1
1

样例输入2

2 10
2
-3
1

样例输出2

2
1
2

样例输入3

2 10
1
3
2

样例输出3

0

限制

对于 30%的数据,0 < n ≤ 2, | ai | ≤ 100,anan ≠ 0, m ≤ 100;
对于 50%的数据,0 < n ≤ 100,| ai | ≤ 10100 an ≠ 0,m ≤ 100;
对于 70%的数据,0 < n ≤ 100,| ai | ≤ 1010000 an ≠ 0,m ≤ 10000;
对于 100%的数据,0 < n ≤ 100,| ai | ≤ 1010000 an ≠ 0,m ≤ 1000000。

来源

NOIP2014 提高组 Day2

这个题一看很吓人, 1010000 ?!多大一个数啊,高精度?肯定超时.
怎么做?
先是一定要用秦九韶算法,不然写起来不仅慢还很辛苦。

秦九韶算法:

f(x)=a0+a1x1+a2x2+an1xn1+anxn=a0+x(a1+x(a2+x(a3+x(an1+xan)))
这样处理以后,枚举x,从内向外算就可以在O(n)验证方程,而且写起来也轻松
但是数字很大,高精度不可能
写不来set的我,天天暴力哈希,这让我直接就想到可以都同余方程,两边各模一个质数,若原方程计算结果为0,模了以后也为0,然后多取几个质数可以避免冲突。过了70%,T了30%。
也就是说还要优化。
都想到了同余方程那自然就可以想到后面的这个了: f(x)f(x+p)(modp)
这样我们就只用算1~p而不是1~m了,p取3~5个2万左右的质数就可以避免冲突了。
代码见下,很简单,就没有写注释了。

#include<iostream>
#include<cstdio>
#include<string>
#define ll long longusing namespace std;
ll a[4][105],x,m,n,k,b[4][1000005],p[4]={0,10007,23333,11261};
int main()
{cin>>n>>m;for(int i=0;i<=n;i++){string s;cin>>s;int len=s.size(),flag=0;if(s[0]=='-')flag=1;for(int j=flag;j<len;j++){a[1][i]=(a[1][i]*10+s[j]-'0')%p[1];a[2][i]=(a[2][i]*10+s[j]-'0')%p[2];a[3][i]=(a[3][i]*10+s[j]-'0')%p[3]; }if(flag){a[1][i]=-a[1][i];a[2][i]=-a[2][i];a[3][i]=-a[3][i];}}for(int k=1;k<=3;k++){for(int i=1;i<p[k];i++){int t=a[k][n];for(int j=n-1;j>=0;j--)t=(t*i+a[k][j])%p[k];if(t==0)b[k][i]=1;}}for(int i=1;i<=m;i++){b[0][i]=1;for(int j=1;j<=3;j++)if(!b[j][i%p[j]])b[0][i]=0;}int num=0;for(int i=1;i<=m;i++)if(b[0][i])num++;cout<<num<<'\n';for(int i=1;i<=m;i++)if(b[0][i])printf("%d\n",i);return 0;
}

大概就是这个样子,如果有什么问题,或错误,请在评论区提出,谢谢。

这篇关于【noip】解方程 秦九韶算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1031300

相关文章

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1