【线性代数】第五章 大数定律及中心极限定理

2024-06-04 21:28

本文主要是介绍【线性代数】第五章 大数定律及中心极限定理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大数定律及中心极限定理

  • 一、大数定理
    • 1.1 问题引入
    • 1.2 伯努利大数定律
    • 1.3 切比雪夫大数定律
    • 1.4 马尔可夫大数定律
    • 1.5 辛钦大数定律
  • 二、中心极限定理
    • 2.1 问题的引入
    • 2.2 基本定理

一、大数定理

1.1 问题引入

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.2 伯努利大数定律

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.3 切比雪夫大数定律

在这里插入图片描述

1.4 马尔可夫大数定律

在这里插入图片描述

1.5 辛钦大数定律

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二、中心极限定理

2.1 问题的引入

在这里插入图片描述
在这里插入图片描述

2.2 基本定理

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这篇关于【线性代数】第五章 大数定律及中心极限定理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1031165

相关文章

springboot加载不到nacos配置中心的配置问题处理

《springboot加载不到nacos配置中心的配置问题处理》:本文主要介绍springboot加载不到nacos配置中心的配置问题处理,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录springboot加载不到nacos配置中心的配置两种可能Spring Boot 版本Nacos

Nacos注册中心和配置中心的底层原理全面解读

《Nacos注册中心和配置中心的底层原理全面解读》:本文主要介绍Nacos注册中心和配置中心的底层原理的全面解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录临时实例和永久实例为什么 Nacos 要将服务实例分为临时实例和永久实例?1.x 版本和2.x版本的区别

SpringCloud使用Nacos 配置中心实现配置自动刷新功能使用

《SpringCloud使用Nacos配置中心实现配置自动刷新功能使用》SpringCloud项目中使用Nacos作为配置中心可以方便开发及运维人员随时查看配置信息,及配置共享,并且Nacos支持配... 目录前言一、Nacos中集中配置方式?二、使用步骤1.使用$Value 注解2.使用@Configur

Spring Cloud之注册中心Nacos的使用详解

《SpringCloud之注册中心Nacos的使用详解》本文介绍SpringCloudAlibaba中的Nacos组件,对比了Nacos与Eureka的区别,展示了如何在项目中引入SpringClo... 目录Naacos服务注册/服务发现引⼊Spring Cloud Alibaba依赖引入Naco编程s依

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

跨国公司撤出在华研发中心的启示:中国IT产业的挑战与机遇

近日,IBM中国宣布撤出在华的两大研发中心,这一决定在IT行业引发了广泛的讨论和关注。跨国公司在华研发中心的撤出,不仅对众多IT从业者的职业发展带来了直接的冲击,也引发了人们对全球化背景下中国IT产业竞争力和未来发展方向的深思。面对这一突如其来的变化,我们应如何看待跨国公司的决策?中国IT人才又该如何应对?中国IT产业将何去何从?本文将围绕这些问题展开探讨。 跨国公司撤出的背景与

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

uva 10069 DP + 大数加法

代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <queue>#include <map>#include <cl

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

线性代数|机器学习-P35距离矩阵和普鲁克问题

文章目录 1. 距离矩阵2. 正交普鲁克问题3. 实例说明 1. 距离矩阵 假设有三个点 x 1 , x 2 , x 3 x_1,x_2,x_3 x1​,x2​,x3​,三个点距离如下: ∣ ∣ x 1 − x 2 ∣ ∣ 2 = 1 , ∣ ∣ x 2 − x 3 ∣ ∣ 2 = 1 , ∣ ∣ x 1 − x 3 ∣ ∣ 2 = 6 \begin{equation} ||x