线性代数|机器学习-P35距离矩阵和普鲁克问题

2024-09-08 09:28

本文主要是介绍线性代数|机器学习-P35距离矩阵和普鲁克问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1. 距离矩阵
  • 2. 正交普鲁克问题
  • 3. 实例说明

1. 距离矩阵

假设有三个点 x 1 , x 2 , x 3 x_1,x_2,x_3 x1,x2,x3,三个点距离如下:
∣ ∣ x 1 − x 2 ∣ ∣ 2 = 1 , ∣ ∣ x 2 − x 3 ∣ ∣ 2 = 1 , ∣ ∣ x 1 − x 3 ∣ ∣ 2 = 6 \begin{equation} ||x_1-x_2||^2=1,||x_2-x_3||^2=1,||x_1-x_3||^2=6 \end{equation} ∣∣x1x22=1,∣∣x2x32=1,∣∣x1x32=6

  • 根据上面的公式发现不满足三角不等式定理,两边之和大于第三边 1 + 1 ≤ 6 1+1\le6 1+16
  • 根据三个点组成的距离矩阵Distance Matrix如下:
    D = [ 0 1 6 1 0 1 6 1 0 ] \begin{equation} D=\begin{bmatrix} 0&1&6\\\\ 1&0&1\\\\ 6&1&0 \end{bmatrix} \end{equation} D= 016101610
  • 假设我们有两个点 x 1 , x 2 x_1,x^2 x1,x2,那么 d i j d_{ij} dij的定义:
    D i j = ∣ ∣ x i − x j ∣ ∣ 2 = ( x i − x j ) T ( x i − x j ) = x i T x i − x i T x j − x j T x i + x j T x j \begin{equation} D_{ij}=||x_i-x_j||^2=(x_i-x_j)^T(x_i-x_j)=x_i^Tx_i-x_i^Tx_j-x_j^Tx_i+x_j^Tx_j \end{equation} Dij=∣∣xixj2=(xixj)T(xixj)=xiTxixiTxjxjTxi+xjTxj
  • 由于对称性可得: x i T x j = x j T x i x_i^Tx_j=x_j^Tx_i xiTxj=xjTxi,故化简可得:
    D i j = x i T x i − 2 x i T x j + x j T x j \begin{equation} D_{ij}=x_i^Tx_i-2x_i^Tx_j+x_j^Tx_j \end{equation} Dij=xiTxi2xiTxj+xjTxj
  • 为了方便计算,我们定义一个矩阵G表示如下:
    X = [ x i x j ] ; X T = [ x i T x j T ] → G = X T X = [ x i T x i x i T x j x j T x i x j T x j ] \begin{equation} X=\begin{bmatrix}x_i&x_j\end{bmatrix};X^T=\begin{bmatrix}x_i^T\\\\x_j^T\end{bmatrix}\to G=X^TX=\begin{bmatrix}x_i^Tx_i&x_i^Tx_j\\\\x_j^Tx_i&x_j^Tx_j\end{bmatrix} \end{equation} X=[xixj];XT= xiTxjT G=XTX= xiTxixjTxixiTxjxjTxj
  • 由此我们可以用G来表示D如下:
    D i j = G i i − 2 G i j + G j j \begin{equation} D_{ij}=G_{ii}-2G_{ij}+G_{jj} \end{equation} Dij=Gii2Gij+Gjj
  • 优势:为什么我们要这么费力的做?原因在于,我们求D矩阵的时候,我们需要不断的进行多重循环,效率非常低,如果我们这种方法,第一步通过点乘求得矩阵G,第二步只需要简单的抽取矩阵G中的元素,第三步就通过简单的加减乘除即可得到同样结果的距离矩阵D,结果是一样,但是此种算法大大减少了计算量,真是太神奇了!!!
  • 参考链接:
    斯坦福CS231N课程笔记(三)-距离矩阵的计算方法

2. 正交普鲁克问题

假设有两个矩阵A,B ,我们希望找到一个正交矩阵Q,使得 ∣ ∣ A Q − B ∣ ∣ F ||AQ-B||_F ∣∣AQBF最小?
min ⁡ ∣ ∣ A Q − B ∣ ∣ F ; s t : Q T Q = I \begin{equation} \min||AQ-B||_F;st:Q^TQ=I \end{equation} min∣∣AQBF;st:QTQ=I

  • 其中 A , B ∈ R m × n A,B\in R^{m\times n} A,BRm×n,待求 Q ∈ R n × n Q\in R^{n\times n} QRn×n为正交矩阵

3. 实例说明

  • 假设我们有一个矩阵A,B表示如下,希望找到一个正交矩阵Q使得 ∣ ∣ A Q − B ∣ ∣ F ||AQ-B||_F ∣∣AQBF尽可能的小?
    A = [ 1 0 0 1 1 1 ] ; B = [ 0 − 1 1 0 1 − 1 ] ; \begin{equation} A=\begin{bmatrix} 1&0\\\\ 0&1\\\\ 1&1\end{bmatrix};B=\begin{bmatrix} 0&-1\\\\ 1&0\\\\ 1&-1\end{bmatrix}; \end{equation} A= 101011 ;B= 011101 ;
  • 第一步: 求矩阵C
    C = A T B = [ 1 0 1 0 1 1 ] [ 0 − 1 1 0 1 − 1 ] = [ 1 − 2 2 − 1 ] ; \begin{equation} C=A^TB=\begin{bmatrix} 1&0&1\\\\ 0&1&1\end{bmatrix}\begin{bmatrix} 0&-1\\\\ 1&0\\\\ 1&-1\end{bmatrix}=\begin{bmatrix} 1&-2\\\\ 2&-1\end{bmatrix}; \end{equation} C=ATB= 100111 011101 = 1221 ;
  • 第二步:将矩阵C进行奇异值分解SVD:
    C = U Σ V T ; U = [ − 1 2 − 1 2 − 1 2 1 2 ] Σ = [ 3 0 0 1 ] ; V T = [ − 1 2 1 2 1 2 1 2 ] \begin{equation} C=U\Sigma V^T;U=\begin{bmatrix} -\frac{1}{\sqrt{2}}&-\frac{1}{\sqrt{2}}\\\\ -\frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\end{bmatrix} \Sigma=\begin{bmatrix} 3&0\\\\ 0&1\end{bmatrix};V^T=\begin{bmatrix} -\frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\\\\ \frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\end{bmatrix} \end{equation} C=UΣVT;U= 2 12 12 12 1 Σ= 3001 ;VT= 2 12 12 12 1
  • 第三步: 求出正交矩阵Q
    Q = U V T = [ − 1 2 − 1 2 − 1 2 1 2 ] [ − 1 2 1 2 1 2 1 2 ] = [ 0 − 1 1 0 ] \begin{equation} Q=UV^T=\begin{bmatrix} -\frac{1}{\sqrt{2}}&-\frac{1}{\sqrt{2}}\\\\ -\frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\end{bmatrix} \begin{bmatrix} -\frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\\\\ \frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\end{bmatrix}= \begin{bmatrix} 0&-1\\\\ 1&0\end{bmatrix} \end{equation} Q=UVT= 2 12 12 12 1 2 12 12 12 1 = 0110
  • 第四步,验证 ∣ ∣ A Q − B ∣ ∣ ||AQ-B|| ∣∣AQB∣∣
    ∣ ∣ A Q − B ∣ ∣ F = 0 \begin{equation} ||AQ-B||_F=0 \end{equation} ∣∣AQBF=0
  • 小结:这种方法还真能够找到正交矩阵Q.

这篇关于线性代数|机器学习-P35距离矩阵和普鲁克问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1147728

相关文章

MySQL 设置AUTO_INCREMENT 无效的问题解决

《MySQL设置AUTO_INCREMENT无效的问题解决》本文主要介绍了MySQL设置AUTO_INCREMENT无效的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录快速设置mysql的auto_increment参数一、修改 AUTO_INCREMENT 的值。

关于跨域无效的问题及解决(java后端方案)

《关于跨域无效的问题及解决(java后端方案)》:本文主要介绍关于跨域无效的问题及解决(java后端方案),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录通用后端跨域方法1、@CrossOrigin 注解2、springboot2.0 实现WebMvcConfig

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码

Java死锁问题解决方案及示例详解

《Java死锁问题解决方案及示例详解》死锁是指两个或多个线程因争夺资源而相互等待,导致所有线程都无法继续执行的一种状态,本文给大家详细介绍了Java死锁问题解决方案详解及实践样例,需要的朋友可以参考下... 目录1、简述死锁的四个必要条件:2、死锁示例代码3、如何检测死锁?3.1 使用 jstack3.2

解决JSONField、JsonProperty不生效的问题

《解决JSONField、JsonProperty不生效的问题》:本文主要介绍解决JSONField、JsonProperty不生效的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录jsONField、JsonProperty不生效javascript问题排查总结JSONField

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

MySQL版本问题导致项目无法启动问题的解决方案

《MySQL版本问题导致项目无法启动问题的解决方案》本文记录了一次因MySQL版本不一致导致项目启动失败的经历,详细解析了连接错误的原因,并提供了两种解决方案:调整连接字符串禁用SSL或统一MySQL... 目录本地项目启动报错报错原因:解决方案第一个:第二种:容器启动mysql的坑两种修改时区的方法:本地

springboot加载不到nacos配置中心的配置问题处理

《springboot加载不到nacos配置中心的配置问题处理》:本文主要介绍springboot加载不到nacos配置中心的配置问题处理,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录springboot加载不到nacos配置中心的配置两种可能Spring Boot 版本Nacos

Java中JSON格式反序列化为Map且保证存取顺序一致的问题

《Java中JSON格式反序列化为Map且保证存取顺序一致的问题》:本文主要介绍Java中JSON格式反序列化为Map且保证存取顺序一致的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未... 目录背景问题解决方法总结背景做项目涉及两个微服务之间传数据时,需要提供方将Map类型的数据序列化为co