线性代数|机器学习-P35距离矩阵和普鲁克问题

2024-09-08 09:28

本文主要是介绍线性代数|机器学习-P35距离矩阵和普鲁克问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1. 距离矩阵
  • 2. 正交普鲁克问题
  • 3. 实例说明

1. 距离矩阵

假设有三个点 x 1 , x 2 , x 3 x_1,x_2,x_3 x1,x2,x3,三个点距离如下:
∣ ∣ x 1 − x 2 ∣ ∣ 2 = 1 , ∣ ∣ x 2 − x 3 ∣ ∣ 2 = 1 , ∣ ∣ x 1 − x 3 ∣ ∣ 2 = 6 \begin{equation} ||x_1-x_2||^2=1,||x_2-x_3||^2=1,||x_1-x_3||^2=6 \end{equation} ∣∣x1x22=1,∣∣x2x32=1,∣∣x1x32=6

  • 根据上面的公式发现不满足三角不等式定理,两边之和大于第三边 1 + 1 ≤ 6 1+1\le6 1+16
  • 根据三个点组成的距离矩阵Distance Matrix如下:
    D = [ 0 1 6 1 0 1 6 1 0 ] \begin{equation} D=\begin{bmatrix} 0&1&6\\\\ 1&0&1\\\\ 6&1&0 \end{bmatrix} \end{equation} D= 016101610
  • 假设我们有两个点 x 1 , x 2 x_1,x^2 x1,x2,那么 d i j d_{ij} dij的定义:
    D i j = ∣ ∣ x i − x j ∣ ∣ 2 = ( x i − x j ) T ( x i − x j ) = x i T x i − x i T x j − x j T x i + x j T x j \begin{equation} D_{ij}=||x_i-x_j||^2=(x_i-x_j)^T(x_i-x_j)=x_i^Tx_i-x_i^Tx_j-x_j^Tx_i+x_j^Tx_j \end{equation} Dij=∣∣xixj2=(xixj)T(xixj)=xiTxixiTxjxjTxi+xjTxj
  • 由于对称性可得: x i T x j = x j T x i x_i^Tx_j=x_j^Tx_i xiTxj=xjTxi,故化简可得:
    D i j = x i T x i − 2 x i T x j + x j T x j \begin{equation} D_{ij}=x_i^Tx_i-2x_i^Tx_j+x_j^Tx_j \end{equation} Dij=xiTxi2xiTxj+xjTxj
  • 为了方便计算,我们定义一个矩阵G表示如下:
    X = [ x i x j ] ; X T = [ x i T x j T ] → G = X T X = [ x i T x i x i T x j x j T x i x j T x j ] \begin{equation} X=\begin{bmatrix}x_i&x_j\end{bmatrix};X^T=\begin{bmatrix}x_i^T\\\\x_j^T\end{bmatrix}\to G=X^TX=\begin{bmatrix}x_i^Tx_i&x_i^Tx_j\\\\x_j^Tx_i&x_j^Tx_j\end{bmatrix} \end{equation} X=[xixj];XT= xiTxjT G=XTX= xiTxixjTxixiTxjxjTxj
  • 由此我们可以用G来表示D如下:
    D i j = G i i − 2 G i j + G j j \begin{equation} D_{ij}=G_{ii}-2G_{ij}+G_{jj} \end{equation} Dij=Gii2Gij+Gjj
  • 优势:为什么我们要这么费力的做?原因在于,我们求D矩阵的时候,我们需要不断的进行多重循环,效率非常低,如果我们这种方法,第一步通过点乘求得矩阵G,第二步只需要简单的抽取矩阵G中的元素,第三步就通过简单的加减乘除即可得到同样结果的距离矩阵D,结果是一样,但是此种算法大大减少了计算量,真是太神奇了!!!
  • 参考链接:
    斯坦福CS231N课程笔记(三)-距离矩阵的计算方法

2. 正交普鲁克问题

假设有两个矩阵A,B ,我们希望找到一个正交矩阵Q,使得 ∣ ∣ A Q − B ∣ ∣ F ||AQ-B||_F ∣∣AQBF最小?
min ⁡ ∣ ∣ A Q − B ∣ ∣ F ; s t : Q T Q = I \begin{equation} \min||AQ-B||_F;st:Q^TQ=I \end{equation} min∣∣AQBF;st:QTQ=I

  • 其中 A , B ∈ R m × n A,B\in R^{m\times n} A,BRm×n,待求 Q ∈ R n × n Q\in R^{n\times n} QRn×n为正交矩阵

3. 实例说明

  • 假设我们有一个矩阵A,B表示如下,希望找到一个正交矩阵Q使得 ∣ ∣ A Q − B ∣ ∣ F ||AQ-B||_F ∣∣AQBF尽可能的小?
    A = [ 1 0 0 1 1 1 ] ; B = [ 0 − 1 1 0 1 − 1 ] ; \begin{equation} A=\begin{bmatrix} 1&0\\\\ 0&1\\\\ 1&1\end{bmatrix};B=\begin{bmatrix} 0&-1\\\\ 1&0\\\\ 1&-1\end{bmatrix}; \end{equation} A= 101011 ;B= 011101 ;
  • 第一步: 求矩阵C
    C = A T B = [ 1 0 1 0 1 1 ] [ 0 − 1 1 0 1 − 1 ] = [ 1 − 2 2 − 1 ] ; \begin{equation} C=A^TB=\begin{bmatrix} 1&0&1\\\\ 0&1&1\end{bmatrix}\begin{bmatrix} 0&-1\\\\ 1&0\\\\ 1&-1\end{bmatrix}=\begin{bmatrix} 1&-2\\\\ 2&-1\end{bmatrix}; \end{equation} C=ATB= 100111 011101 = 1221 ;
  • 第二步:将矩阵C进行奇异值分解SVD:
    C = U Σ V T ; U = [ − 1 2 − 1 2 − 1 2 1 2 ] Σ = [ 3 0 0 1 ] ; V T = [ − 1 2 1 2 1 2 1 2 ] \begin{equation} C=U\Sigma V^T;U=\begin{bmatrix} -\frac{1}{\sqrt{2}}&-\frac{1}{\sqrt{2}}\\\\ -\frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\end{bmatrix} \Sigma=\begin{bmatrix} 3&0\\\\ 0&1\end{bmatrix};V^T=\begin{bmatrix} -\frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\\\\ \frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\end{bmatrix} \end{equation} C=UΣVT;U= 2 12 12 12 1 Σ= 3001 ;VT= 2 12 12 12 1
  • 第三步: 求出正交矩阵Q
    Q = U V T = [ − 1 2 − 1 2 − 1 2 1 2 ] [ − 1 2 1 2 1 2 1 2 ] = [ 0 − 1 1 0 ] \begin{equation} Q=UV^T=\begin{bmatrix} -\frac{1}{\sqrt{2}}&-\frac{1}{\sqrt{2}}\\\\ -\frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\end{bmatrix} \begin{bmatrix} -\frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\\\\ \frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\end{bmatrix}= \begin{bmatrix} 0&-1\\\\ 1&0\end{bmatrix} \end{equation} Q=UVT= 2 12 12 12 1 2 12 12 12 1 = 0110
  • 第四步,验证 ∣ ∣ A Q − B ∣ ∣ ||AQ-B|| ∣∣AQB∣∣
    ∣ ∣ A Q − B ∣ ∣ F = 0 \begin{equation} ||AQ-B||_F=0 \end{equation} ∣∣AQBF=0
  • 小结:这种方法还真能够找到正交矩阵Q.

这篇关于线性代数|机器学习-P35距离矩阵和普鲁克问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1147728

相关文章

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

idea突然报错Malformed \uxxxx encoding问题及解决

《idea突然报错Malformeduxxxxencoding问题及解决》Maven项目在切换Git分支时报错,提示project元素为描述符根元素,解决方法:删除Maven仓库中的resolv... 目www.chinasem.cn录问题解决方式总结问题idea 上的 maven China编程项目突然报错,是

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

前端导出Excel文件出现乱码或文件损坏问题的解决办法

《前端导出Excel文件出现乱码或文件损坏问题的解决办法》在现代网页应用程序中,前端有时需要与后端进行数据交互,包括下载文件,:本文主要介绍前端导出Excel文件出现乱码或文件损坏问题的解决办法,... 目录1. 检查后端返回的数据格式2. 前端正确处理二进制数据方案 1:直接下载(推荐)方案 2:手动构造

Python绘制TSP、VRP问题求解结果图全过程

《Python绘制TSP、VRP问题求解结果图全过程》本文介绍用Python绘制TSP和VRP问题的静态与动态结果图,静态图展示路径,动态图通过matplotlib.animation模块实现动画效果... 目录一、静态图二、动态图总结【代码】python绘制TSP、VRP问题求解结果图(包含静态图与动态图

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

k8s容器放开锁内存限制问题

《k8s容器放开锁内存限制问题》nccl-test容器运行mpirun时因NCCL_BUFFSIZE过大导致OOM,需通过修改docker服务配置文件,将LimitMEMLOCK设为infinity并... 目录问题问题确认放开容器max locked memory限制总结参考:https://Access

Java中字符编码问题的解决方法详解

《Java中字符编码问题的解决方法详解》在日常Java开发中,字符编码问题是一个非常常见却又特别容易踩坑的地方,这篇文章就带你一步一步看清楚字符编码的来龙去脉,并结合可运行的代码,看看如何在Java项... 目录前言背景:为什么会出现编码问题常见场景分析控制台输出乱码文件读写乱码数据库存取乱码解决方案统一使