numpy求解线性代数相关问题

2025-01-21 16:50

本文主要是介绍numpy求解线性代数相关问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧...

在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组类型相乘是逐元素相乘,而矩阵类型相乘则是矩阵乘法。

以下使用numpy.array类型来进行线性代数问题求解。

矩阵的转置

A.T

import numpy as np

A = np.array([[1, 2], [3, 4]])

A_T = A.T
print(A_T)

矩阵乘法

np.dot(A, B)或者是A @ B

import numpy as np

A = np.array([[1, 2], [3, 4]])
B = np.array([[5, 6], [7, 8]])
C = np.dot(A, B)
print(C)
D = A @ B
print(D)python

逆矩阵

np.linalg.inv(A)

import numpy as np

A = np.array([[1, 2], [3, 4]])

inv_A = np.linalg.inv(A)
print(inv_A)

求解行列式

np.linalg.det(A)

import numpy as np

A = np.array([[1, 2], [3, 4]])

det_A = npdNiDkmtv.linalg.det(A)
print(det_A)

矩阵的秩和迹

矩阵的秩是矩阵线性无关的行(或列)的最大数目,它反映了矩阵的“非零度”。矩阵的迹则是其主对角线上元素之和。

求解矩阵的秩:np.linalg.matrix_rank(A)

求解矩阵的迹:np.trace(A)

求解矩阵的迹,用于计算矩阵主对角线上元素的总和,较为通用。所以没有在linalg模块。

import numpy as np

A = np.array([[1, 2], [3, 4]])

rank_A = np.linalg.matrix_rank(A)
print(rank_A)

tr_A = np.trace(A)
print(tr_A)

解线性方程组

np.linalg.solve(A, b)

import numpy as np

A = np.array([[1, 2], [3, 4]])

b = np.array([1, 2])
# A x = b
x = np.linalg.solve(A, b)
print(x)

计算特征值和特征向量

特征值,特征向量 = np.linalg.eig(A)

import numpy as np

A = np.array([[1, 2], [3, 4]])

eigenvalues, eiChina编程genvectors = np.linalg.eig(A)
print(eigenvalues)
print(eigenvectors)

奇异值分解

奇异值分解(Singular Value Decjsomposition,简称 SVD)是线性代数中一种重要的矩阵分解方法。它将一个矩阵分解为三个特www.chinasem.cn定的矩阵乘积,这些矩阵具有明确的几何和代数意义。对于任意一个 m ∗ n的实数矩阵 A,其奇异值分解可以表示为:

A = USVT

U, S, Vt = np.linalg.svd(A)

import numpy as np

A = np.array([[1, 2], [3, 4]])

U, S, Vt = np.linalg.svd(A)
print(U,S,Vt)

到此这篇关于numpy求解线性代数相关问题的文章就介绍到这了,更多相关numpy求解线性代数内容请搜索China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程China编程(www.chinasem.cn)! 

这篇关于numpy求解线性代数相关问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1153168

相关文章

Maven中引入 springboot 相关依赖的方式(最新推荐)

《Maven中引入springboot相关依赖的方式(最新推荐)》:本文主要介绍Maven中引入springboot相关依赖的方式(最新推荐),本文给大家介绍的非常详细,对大家的学习或工作具有... 目录Maven中引入 springboot 相关依赖的方式1. 不使用版本管理(不推荐)2、使用版本管理(推

MyBatis模糊查询报错:ParserException: not supported.pos 问题解决

《MyBatis模糊查询报错:ParserException:notsupported.pos问题解决》本文主要介绍了MyBatis模糊查询报错:ParserException:notsuppo... 目录问题描述问题根源错误SQL解析逻辑深层原因分析三种解决方案方案一:使用CONCAT函数(推荐)方案二:

Redis 热 key 和大 key 问题小结

《Redis热key和大key问题小结》:本文主要介绍Redis热key和大key问题小结,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、什么是 Redis 热 key?热 key(Hot Key)定义: 热 key 常见表现:热 key 的风险:二、

IntelliJ IDEA 中配置 Spring MVC 环境的详细步骤及问题解决

《IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决》:本文主要介绍IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决,本文分步骤结合实例给大... 目录步骤 1:创建 Maven Web 项目步骤 2:添加 Spring MVC 依赖1、保存后执行2、将新的依赖

Spring 中的循环引用问题解决方法

《Spring中的循环引用问题解决方法》:本文主要介绍Spring中的循环引用问题解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录什么是循环引用?循环依赖三级缓存解决循环依赖二级缓存三级缓存本章来聊聊Spring 中的循环引用问题该如何解决。这里聊

Spring Boot中JSON数值溢出问题从报错到优雅解决办法

《SpringBoot中JSON数值溢出问题从报错到优雅解决办法》:本文主要介绍SpringBoot中JSON数值溢出问题从报错到优雅的解决办法,通过修改字段类型为Long、添加全局异常处理和... 目录一、问题背景:为什么我的接口突然报错了?二、为什么会发生这个错误?1. Java 数据类型的“容量”限制

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

关于MongoDB图片URL存储异常问题以及解决

《关于MongoDB图片URL存储异常问题以及解决》:本文主要介绍关于MongoDB图片URL存储异常问题以及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录MongoDB图片URL存储异常问题项目场景问题描述原因分析解决方案预防措施js总结MongoDB图

SpringBoot项目中报错The field screenShot exceeds its maximum permitted size of 1048576 bytes.的问题及解决

《SpringBoot项目中报错ThefieldscreenShotexceedsitsmaximumpermittedsizeof1048576bytes.的问题及解决》这篇文章... 目录项目场景问题描述原因分析解决方案总结项目场景javascript提示:项目相关背景:项目场景:基于Spring

解决Maven项目idea找不到本地仓库jar包问题以及使用mvn install:install-file

《解决Maven项目idea找不到本地仓库jar包问题以及使用mvninstall:install-file》:本文主要介绍解决Maven项目idea找不到本地仓库jar包问题以及使用mvnin... 目录Maven项目idea找不到本地仓库jar包以及使用mvn install:install-file基