numpy求解线性代数相关问题

2025-01-21 16:50

本文主要是介绍numpy求解线性代数相关问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧...

在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组类型相乘是逐元素相乘,而矩阵类型相乘则是矩阵乘法。

以下使用numpy.array类型来进行线性代数问题求解。

矩阵的转置

A.T

import numpy as np

A = np.array([[1, 2], [3, 4]])

A_T = A.T
print(A_T)

矩阵乘法

np.dot(A, B)或者是A @ B

import numpy as np

A = np.array([[1, 2], [3, 4]])
B = np.array([[5, 6], [7, 8]])
C = np.dot(A, B)
print(C)
D = A @ B
print(D)python

逆矩阵

np.linalg.inv(A)

import numpy as np

A = np.array([[1, 2], [3, 4]])

inv_A = np.linalg.inv(A)
print(inv_A)

求解行列式

np.linalg.det(A)

import numpy as np

A = np.array([[1, 2], [3, 4]])

det_A = npdNiDkmtv.linalg.det(A)
print(det_A)

矩阵的秩和迹

矩阵的秩是矩阵线性无关的行(或列)的最大数目,它反映了矩阵的“非零度”。矩阵的迹则是其主对角线上元素之和。

求解矩阵的秩:np.linalg.matrix_rank(A)

求解矩阵的迹:np.trace(A)

求解矩阵的迹,用于计算矩阵主对角线上元素的总和,较为通用。所以没有在linalg模块。

import numpy as np

A = np.array([[1, 2], [3, 4]])

rank_A = np.linalg.matrix_rank(A)
print(rank_A)

tr_A = np.trace(A)
print(tr_A)

解线性方程组

np.linalg.solve(A, b)

import numpy as np

A = np.array([[1, 2], [3, 4]])

b = np.array([1, 2])
# A x = b
x = np.linalg.solve(A, b)
print(x)

计算特征值和特征向量

特征值,特征向量 = np.linalg.eig(A)

import numpy as np

A = np.array([[1, 2], [3, 4]])

eigenvalues, eiChina编程genvectors = np.linalg.eig(A)
print(eigenvalues)
print(eigenvectors)

奇异值分解

奇异值分解(Singular Value Decjsomposition,简称 SVD)是线性代数中一种重要的矩阵分解方法。它将一个矩阵分解为三个特www.chinasem.cn定的矩阵乘积,这些矩阵具有明确的几何和代数意义。对于任意一个 m ∗ n的实数矩阵 A,其奇异值分解可以表示为:

A = USVT

U, S, Vt = np.linalg.svd(A)

import numpy as np

A = np.array([[1, 2], [3, 4]])

U, S, Vt = np.linalg.svd(A)
print(U,S,Vt)

到此这篇关于numpy求解线性代数相关问题的文章就介绍到这了,更多相关numpy求解线性代数内容请搜索China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程China编程(www.chinasem.cn)! 

这篇关于numpy求解线性代数相关问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1153168

相关文章

解决Java中基于GeoTools的Shapefile读取乱码的问题

《解决Java中基于GeoTools的Shapefile读取乱码的问题》本文主要讨论了在使用Java编程语言进行地理信息数据解析时遇到的Shapefile属性信息乱码问题,以及根据不同的编码设置进行属... 目录前言1、Shapefile属性字段编码的情况:一、Shp文件常见的字符集编码1、System编码

Spring MVC使用视图解析的问题解读

《SpringMVC使用视图解析的问题解读》:本文主要介绍SpringMVC使用视图解析的问题解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC使用视图解析1. 会使用视图解析的情况2. 不会使用视图解析的情况总结Spring MVC使用视图

Redis解决缓存击穿问题的两种方法

《Redis解决缓存击穿问题的两种方法》缓存击穿问题也叫热点Key问题,就是⼀个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击,本文给大家介绍了Re... 目录引言解决办法互斥锁(强一致,性能差)逻辑过期(高可用,性能优)设计逻辑过期时间引言缓存击穿:给

Java程序运行时出现乱码问题的排查与解决方法

《Java程序运行时出现乱码问题的排查与解决方法》本文主要介绍了Java程序运行时出现乱码问题的排查与解决方法,包括检查Java源文件编码、检查编译时的编码设置、检查运行时的编码设置、检查命令提示符的... 目录一、检查 Java 源文件编码二、检查编译时的编码设置三、检查运行时的编码设置四、检查命令提示符

Jackson库进行JSON 序列化时遇到了无限递归(Infinite Recursion)的问题及解决方案

《Jackson库进行JSON序列化时遇到了无限递归(InfiniteRecursion)的问题及解决方案》使用Jackson库进行JSON序列化时遇到了无限递归(InfiniteRecursi... 目录解决方案‌1. 使用 @jsonIgnore 忽略一个方向的引用2. 使用 @JsonManagedR

关于Docker Desktop的WSL报错问题解决办法

《关于DockerDesktop的WSL报错问题解决办法》:本文主要介绍关于DockerDesktop的WSL报错问题解决办法的相关资料,排查发现是因清理%temp%文件夹误删关键WSL文件,... 目录发现问题排查过程:解决方法其实很简单:重装之后再看就能够查到了:最后分享几个排查这类问题的小www.cp

SpringBoot利用dynamic-datasource-spring-boot-starter解决多数据源问题

《SpringBoot利用dynamic-datasource-spring-boot-starter解决多数据源问题》dynamic-datasource-spring-boot-starter是一... 目录概要整体架构构想操作步骤创建数据源切换数据源后续问题小结概要自己闲暇时间想实现一个多租户平台,

VSCode中C/C++编码乱码问题的两种解决方法

《VSCode中C/C++编码乱码问题的两种解决方法》在中国地区,Windows系统中的cmd和PowerShell默认编码是GBK,但VSCode默认使用UTF-8编码,这种编码不一致会导致在VSC... 目录问题方法一:通过 Code Runner 插件调整编码配置步骤方法二:在 PowerShell

mybatis-plus分页无效问题解决

《mybatis-plus分页无效问题解决》本文主要介绍了mybatis-plus分页无效问题解决,原因是配置分页插件的版本问题,旧版本和新版本的MyBatis-Plus需要不同的分页配置,感兴趣的可... 昨天在做一www.chinasem.cn个新项目使用myBATis-plus分页一直失败,后来经过多方

Flask解决指定端口无法生效问题

《Flask解决指定端口无法生效问题》文章讲述了在使用PyCharm开发Flask应用时,启动地址与手动指定的IP端口不一致的问题,通过修改PyCharm的运行配置,将Flask项目的运行模式从Fla... 目录android问题重现解决方案问题重现手动指定的IP端口是app.run(host='0.0.