群体优化算法----人工蜂群优化算法应用于路径规划(机器人避开平面障碍寻找最短路线)

本文主要是介绍群体优化算法----人工蜂群优化算法应用于路径规划(机器人避开平面障碍寻找最短路线),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

介绍

人工蜂群优化算法(Artificial Bee Colony Algorithm, ABC)是由Dervis Karaboga在2005年提出的一种模拟蜜蜂觅食行为的优化算法。该算法基于蜜蜂群体的分工合作和信息交流机制,通过模拟蜜蜂寻找食物源的过程来解决优化问题。ABC算法因其简单、灵活和有效的特点,被广泛应用于各类优化问题,如函数优化、数据挖掘、路径规划等

概念

ABC算法主要模拟了三类蜜蜂的行为:雇佣蜂、观察蜂和侦查蜂。

雇佣蜂(Employed Bees):负责在食物源附近进行局部搜索,并将食物源的信息传递给观察蜂。
观察蜂(Onlooker Bees):在蜂巢中通过观察雇佣蜂的舞蹈选择食物源进行进一步搜索。
侦查蜂(Scout Bees):负责在全局范围内随机搜索新的食物源,以替代那些被淘汰的食物源。

步骤

初始化:在搜索空间内随机生成若干个食物源(即解),并计算其适应度值。
雇佣蜂阶段:
每只雇佣蜂在其对应的食物源附近随机选择一个新的解。
计算新解的适应度值,如果新解优于当前解,则更新当前解。
观察蜂阶段:
观察蜂根据雇佣蜂的舞蹈(适应度值)选择食物源,进行局部搜索。
与雇佣蜂阶段类似,计算新解的适应度值并进行更新。
侦查蜂阶段:
对于那些长时间未被改进的食物源,由侦查蜂进行全局随机搜索,以寻找新的潜在食物源。
终止条件:重复上述步骤直到满足终止条件(如达到最大迭代次数或满足精度要求)。

本文示例

模拟了机器人在一个二维平面内的路径规划问题,目标是找到一条最优路径,使得机器人能够从起点移动到终点,避开障碍物

路径规划问题定义

假设一个二维平面中有若干障碍物,机器人需要从起点(Start)移动到终点(Goal),避开所有障碍物,找到一条最短路径

代码

clc;
clear;% 参数设置
numBees = 50; % 蜂群规模(食物源数量)
maxIter = 1000; % 最大迭代次数
limit = 100; % 限制参数,用于判断是否需要启用侦查蜂
dim = 2; % 问题维度
numObstacles = 10; % 障碍物数量
mapSize = [100, 100]; % 地图大小% 起点和终点位置
startPoint = [10, 10];
endPoint = [90, 90];% 障碍物位置
obstacles = rand(numObstacles, 2) .* repmat(mapSize, numObstacles, 1);% 初始化食物源
foodSources = rand(numBees, dim) .* repmat(mapSize, numBees, 1);
fitness = calculateFitness(foodSources, startPoint, endPoint, obstacles, mapSize);
trials = zeros(numBees, 1);% 绘制地图
figure;
hold on;
axis([0 mapSize(1) 0 mapSize(2)]);
plot(startPoint(1), startPoint(2), 'go', 'MarkerSize', 10, 'MarkerFaceColor', 'g');
plot(endPoint(1), endPoint(2), 'ro', 'MarkerSize', 10, 'MarkerFaceColor', 'r');
for i = 1:numObstaclesplot(obstacles(i, 1), obstacles(i, 2), 'ks', 'MarkerSize', 10, 'MarkerFaceColor', 'k');
end% 主循环
for iter = 1:maxIter% 雇佣蜂阶段for i = 1:numBeesk = randi([1, dim]);phi = rand * 2 - 1;newSolution = foodSources(i, :);newSolution(k) = foodSources(i, k) + phi * (foodSources(i, k) - foodSources(randi([1, numBees]), k));newFitness = calculateFitness(newSolution, startPoint, endPoint, obstacles, mapSize);if newFitness < fitness(i)foodSources(i, :) = newSolution;fitness(i) = newFitness;trials(i) = 0;elsetrials(i) = trials(i) + 1;endend% 观察蜂阶段prob = fitness / sum(fitness);for i = 1:numBeesif rand < prob(i)k = randi([1, dim]);phi = rand * 2 - 1;newSolution = foodSources(i, :);newSolution(k) = foodSources(i, k) + phi * (foodSources(i, k) - foodSources(randi([1, numBees]), k));newFitness = calculateFitness(newSolution, startPoint, endPoint, obstacles, mapSize);if newFitness < fitness(i)foodSources(i, :) = newSolution;fitness(i) = newFitness;trials(i) = 0;elsetrials(i) = trials(i) + 1;endendend% 侦查蜂阶段for i = 1:numBeesif trials(i) > limitfoodSources(i, :) = rand(1, dim) .* mapSize;fitness(i) = calculateFitness(foodSources(i, :), startPoint, endPoint, obstacles, mapSize);trials(i) = 0;endend% 绘制当前最优路径[bestFitness, bestIndex] = min(fitness);bestSolution = foodSources(bestIndex, :);plotPath(startPoint, bestSolution, endPoint, obstacles);drawnow;
end% 计算适应度函数
function fitness = calculateFitness(solutions, startPoint, endPoint, obstacles, mapSize)numSolutions = size(solutions, 1);fitness = zeros(numSolutions, 1);for j = 1:numSolutionssolution = solutions(j, :);path = [startPoint; solution; endPoint];pathLength = 0;for i = 1:(size(path, 1) - 1)pathLength = pathLength + norm(path(i, :) - path(i + 1, :));endfor i = 1:size(obstacles, 1)if min(sqrt(sum((path - obstacles(i, :)).^2, 2))) < 5pathLength = pathLength + 10000; % 惩罚因子endendfitness(j) = pathLength;end
end% 绘制路径
function plotPath(startPoint, solution, endPoint, obstacles)path = [startPoint; solution; endPoint];plot(path(:, 1), path(:, 2), 'b-o');plot(startPoint(1), startPoint(2), 'go', 'MarkerSize', 10, 'MarkerFaceColor', 'g');plot(endPoint(1), endPoint(2), 'ro', 'MarkerSize', 10, 'MarkerFaceColor', 'r');for i = 1:size(obstacles, 1)plot(obstacles(i, 1), obstacles(i, 2), 'ks', 'MarkerSize', 10, 'MarkerFaceColor', 'k');end
end

效果

在这里插入图片描述

说明

初始化部分:

设置蜂群规模、最大迭代次数等参数。
定义地图大小、起点和终点的位置,以及障碍物的位置。
初始化食物源(即路径中的中间点)和计算初始适应度。

主循环部分:
雇佣蜂阶段:雇佣蜂在当前食物源附近进行局部搜索,并根据适应度值决定是否更新食物源。
观察蜂阶段:观察蜂根据雇佣蜂的舞蹈(适应度值)选择食物源进行进一步搜索。
侦查蜂阶段:对长时间未被改进的食物源进行全局随机搜索,以寻找新的潜在食物源。
实时绘制当前最优路径,以便观察算法的收敛过程。

适应度函数:
计算路径的总长度作为适应度值,同时对路径经过障碍物的情况进行惩罚,以避免路径穿越障碍物。

路径绘制:
绘制当前最优路径、起点、终点和障碍物,以便观察路径规划的效果

这篇关于群体优化算法----人工蜂群优化算法应用于路径规划(机器人避开平面障碍寻找最短路线)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1029443

相关文章

CSS 样式表的四种应用方式及css注释的应用小结

《CSS样式表的四种应用方式及css注释的应用小结》:本文主要介绍了CSS样式表的四种应用方式及css注释的应用小结,本文通过实例代码给大家介绍的非常详细,详细内容请阅读本文,希望能对你有所帮助... 一、外部 css(推荐方式)定义:将 CSS 代码保存为独立的 .css 文件,通过 <link> 标签

Python使用Reflex构建现代Web应用的完全指南

《Python使用Reflex构建现代Web应用的完全指南》这篇文章为大家深入介绍了Reflex框架的设计理念,技术特性,项目结构,核心API,实际开发流程以及与其他框架的对比和部署建议,感兴趣的小伙... 目录什么是 ReFlex?为什么选择 Reflex?安装与环境配置构建你的第一个应用核心概念解析组件

C#通过进程调用外部应用的实现示例

《C#通过进程调用外部应用的实现示例》本文主要介绍了C#通过进程调用外部应用的实现示例,以WINFORM应用程序为例,在C#应用程序中调用PYTHON程序,具有一定的参考价值,感兴趣的可以了解一下... 目录窗口程序类进程信息类 系统设置类 以WINFORM应用程序为例,在C#应用程序中调用python程序

Java应用如何防止恶意文件上传

《Java应用如何防止恶意文件上传》恶意文件上传可能导致服务器被入侵,数据泄露甚至服务瘫痪,因此我们必须采取全面且有效的防范措施来保护Java应用的安全,下面我们就来看看具体的实现方法吧... 目录恶意文件上传的潜在风险常见的恶意文件上传手段防范恶意文件上传的关键策略严格验证文件类型检查文件内容控制文件存储

一文详解如何查看本地MySQL的安装路径

《一文详解如何查看本地MySQL的安装路径》本地安装MySQL对于初学者或者开发人员来说是一项基础技能,但在安装过程中可能会遇到各种问题,:本文主要介绍如何查看本地MySQL安装路径的相关资料,需... 目录1. 如何查看本地mysql的安装路径1.1. 方法1:通过查询本地服务1.2. 方法2:通过MyS

SpringBoot中HTTP连接池的配置与优化

《SpringBoot中HTTP连接池的配置与优化》这篇文章主要为大家详细介绍了SpringBoot中HTTP连接池的配置与优化的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、HTTP连接池的核心价值二、Spring Boot集成方案方案1:Apache HttpCl

CSS3 布局样式及其应用举例

《CSS3布局样式及其应用举例》CSS3的布局特性为前端开发者提供了无限可能,无论是Flexbox的一维布局还是Grid的二维布局,它们都能够帮助开发者以更清晰、简洁的方式实现复杂的网页布局,本文给... 目录深入探讨 css3 布局样式及其应用引言一、CSS布局的历史与发展1.1 早期布局的局限性1.2

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

MySQL中like模糊查询的优化方案

《MySQL中like模糊查询的优化方案》在MySQL中,like模糊查询是一种常用的查询方式,但在某些情况下可能会导致性能问题,本文将介绍八种优化MySQL中like模糊查询的方法,需要的朋友可以参... 目录1. 避免以通配符开头的查询2. 使用全文索引(Full-text Index)3. 使用前缀索