Qt图像处理技术十二:QImage实现边缘检测(sobel算法)

2024-06-04 07:04

本文主要是介绍Qt图像处理技术十二:QImage实现边缘检测(sobel算法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

效果图在这里插入图片描述

原理

Sobel算法是一种常用的边缘检测算法,它利用图像的灰度变化来检测图像中物体的边缘。Sobel算法主要包括以下几个步骤:

灰度化: 首先将彩色图像转换为灰度图像,因为灰度图像只包含单通道的灰度信息,有利于边缘检测处理。

计算水平和垂直方向的梯度: 对灰度图像进行水平和垂直方向的滤波操作。分别使用Sobel算子对图像进行卷积操作,Sobel算子是一个3x3的矩阵,用于对图像的每个像素进行加权求和,以便捕捉到图像中灰度变化最为明显的地方。水平方向的Sobel算子通常表示为Gx,垂直方向的Sobel算子通常表示为Gy。

合并梯度: 计算水平和垂直方向梯度的幅值,通常使用以下公式来合并水平和垂直方向的梯度:

[ G = \sqrt{G_x^2 + G_y^2} ]

其中,(G) 表示综合梯度,(G_x) 和 (G_y) 分别表示水平和垂直方向的梯度。

阈值处理: 对合并后的梯度图像进行阈值处理,通过设置合适的阈值来筛选出明显的边缘,抑制一些非边缘的干扰信息。

非极大值抑制: 进一步细化边缘位置,通过保留局部梯度最大的像素值,抑制其他非最大值的像素,以得到更细化、更准确的边缘信息。

总的来说,Sobel算法通过计算图像中每个像素点的梯度值,从而找到图像中灰度变化明显的位置,识别物体的边缘信息。这种方法在计算上比较简单,且结果比较稳定,因此被广泛应用在图像处理领域中的边缘检测任务中。

源码

// Sobel算子
int sobelOperator(const QImage &image, int x, int y)
{int gx = 0, gy = 0;// Sobel算子int sobelX[3][3] = {{-1, 0, 1},{-2, 0, 2},{-1, 0, 1}};int sobelY[3][3] = {{-1, -2, -1},{0, 0, 0},{1, 2, 1}};// 遍历Sobel算子的3x3邻域for (int i = -1; i <= 1; ++i) {for (int j = -1; j <= 1; ++j) {// 获取邻域内的像素值,超出边界的像素使用0代替int pixelX = qBound(0, x + i, image.width() - 1);int pixelY = qBound(0, y + j, image.height() - 1);QColor pixelColor(image.pixel(pixelX, pixelY));// 计算梯度值gx += sobelX[i + 1][j + 1] * pixelColor.red();gy += sobelY[i + 1][j + 1] * pixelColor.red();}}// 计算梯度的幅值int gradientMagnitude = qAbs(gx) + qAbs(gy);// 对梯度值进行归一化处理,确保在[0, 255]范围内gradientMagnitude = qBound(0, gradientMagnitude, 255);return gradientMagnitude;
}// 边缘检测函数
QImage detectEdges(const QImage &inputImage)
{QImage outputImage(inputImage.size(), inputImage.format());for (int y = 0; y < inputImage.height(); ++y) {for (int x = 0; x < inputImage.width(); ++x) {// 对每个像素应用Sobel算子int gradientMagnitude = sobelOperator(inputImage, x, y);// 将梯度值作为边缘强度,用灰度值表示outputImage.setPixelColor(x, y, QColor(gradientMagnitude, gradientMagnitude, gradientMagnitude));}}return outputImage;
}

这篇关于Qt图像处理技术十二:QImage实现边缘检测(sobel算法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1029385

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja