基于用户的协同过滤推荐算法单机版代码实现(包含输出用户-评分矩阵模型、用户间相似度、最近邻居、推荐结果、平均绝对误差MAE、查准率、召回率)

本文主要是介绍基于用户的协同过滤推荐算法单机版代码实现(包含输出用户-评分矩阵模型、用户间相似度、最近邻居、推荐结果、平均绝对误差MAE、查准率、召回率),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于用户的协同过滤推荐算法单机版代码实现(包含输出用户-评分矩阵模型、用户间相似度、最近邻居、推荐结果、平均绝对误差MAE、查准率、召回率)

一、开发工具及使用技术

MyEclipse10、jdk1.7、mahout API、movielens数据集。

二、实现过程

1、定义用户-电影评分矩阵:

/**

 * 用户-电影评分矩阵工具类

 */

public class DataModelUtil {

   //定义用户-电影评分矩阵

   private static DataModel model = null;

      //初始化数据

   static{

      try {

       InputStream inputStream = DataModelUtil.class.getClassLoader().

              getResourceAsStream(Constant.dataPath+Constant.rateFile);

       File file = new File("d://"+Constant.rateFile);

        if (!file.exists())

                file.createNewFile();

        OutputStream outputStream = new FileOutputStream(file);

            int bytesRead = 0;

            byte[] buffer = new byte[1024];

            while ((bytesRead = inputStream.read(buffer, 0, 1024)) != -1) {

             outputStream.write(buffer, 0, bytesRead);

            }

            outputStream.close();

            inputStream.close();

            model = new FileDataModel(file);//实例化数据源

      } catch (Exception e) {

        e.printStackTrace();

      }

   }

  

   /**

    * 得到用户-电影评分矩阵

    * @return

    */

   public static DataModel getDataModel(){

      return model;

   }

  

   /**

    * 获取矩阵中的所有用户

    * @return

    */

   public static LongPrimitiveIterator getUserids(){

      try {

        return model.getUserIDs();

      } catch (TasteException e) {

        e.printStackTrace();

      }

      return null;

   }

  

   /**

    * 获取矩阵中的所有电影

    * @return

    */

   public static LongPrimitiveIterator getItemids(){

      try {

        return model.getItemIDs();

      } catch (TasteException e) {

        e.printStackTrace();

      }

      return null;

   }

  

   /**

    * 根据用户id和电影id找到评分

    * @param userid

    * @param itemid

    * @return

    */

   public static Float getPreferenceValue(long userid,long itemid){

      try {

        return model.getPreferenceValue(userid,itemid);

      } catch (TasteException e) {

        e.printStackTrace();

      }

      return null;

   }

  

}

2、计算用户之间的相似度:

/**

 * 相似度工具类

 */

public class SimilarityUtil {

 

   /**

    * 获取用户相似度对象

    * @param dataModel

    * @return

    */

   public static UserSimilarity getUserSimilarity(DataModel dataModel){

      return (UserSimilarity) getPearsonSimilarity(dataModel);

   }

  

   /**

    * 使用pearson皮尔森相似度算法

    * @param dataModel

    * @return

    */

   private static Object getPearsonSimilarity(DataModel dataModel){

      try {

        return new PearsonCorrelationSimilarity(dataModel);

      } catch (TasteException e) {

        e.printStackTrace();

      }

      return null;

   }

  

}

3、计算目标用户的最近邻居:

/**

 * 最近邻居工具类

 * @author line

 *

 */

public class NearestNUserUtil {

 

   /**

    * 最近邻居工具方法

    * @param userSimilarity

    * @param dataModel

    * @return

    */

   public static UserNeighborhood getNearestNUser(UserSimilarity userSimilarity,

        DataModel dataModel){

      try {

        return new NearestNUserNeighborhood(Constant.knn, userSimilarity, dataModel);

      } catch (TasteException e) {

        e.printStackTrace();

      }

      return null;

   }

  

}

4、定义推荐器:

/**

 * 推荐器工具类

 * @author line

 *

 */

public class RecommendUtil {

 

   public static Recommender getRecommend(DataModel dataModel,

        UserNeighborhood neighborhood,UserSimilarity userSimilarity){

      return new GenericUserBasedRecommender(dataModel, neighborhood, userSimilarity);

   }

  

}

5、计算MAE、precision、recall:

/**

 * 协同过滤算法评判标准类

 */

public class JudgeUtil {

  

   /**

    * 协同过滤算法评判标准方法

    */

   public static void getJudge(){

      System.out.println("计算平均绝对误差MAE、查准率、召回率开始");

      try {

        RandomUtils.useTestSeed();

           //这里使用的评估方法--平均差值

           RecommenderEvaluator evaluator = new AverageAbsoluteDifferenceRecommenderEvaluator();

           /*

                我们创建了一个推荐器生成器

                因为评估的时候我们需要将源数据中的一部分作为测试数据,其他作为算法的训练数据

                需要通过新训练的DataModel构建推荐器,所以采用生成器的方式生成推荐器

           */

           RecommenderBuilder builder = new RecommenderBuilder() {

               public Recommender buildRecommender(DataModel dataModel) throws TasteException {

               UserSimilarity userSimilarity = SimilarityUtil.getUserSimilarity(dataModel);

               LongPrimitiveIterator userids = DataModelUtil.getUserids();

               UserNeighborhood neighborhood = NearestNUserUtil.getNearestNUser(userSimilarity, dataModel);

               return RecommendUtil.getRecommend(dataModel, neighborhood, userSimilarity);

               }

           };

           /*

           RecommenderEvaluator负责将数据分为训练集和测试集,用训练集构建一个DataModelRecommender用来进行测试活动,得到结果之后在于真实数据进行比较。

           参数中0.7代表训练数据为70%,测试数据是30%。最后的1.0代表的是选取数据集的多少数据做整个评估。

           此处第二个null处,使用null就可以满足基本需求,但是如果我们有特殊需求,比如使用特殊的DataModel,在这里可以使用DataModelBuilder的一个实例。

           */

           double score = evaluator.evaluate(builder, null, DataModelUtil.getDataModel(),

               Constant.trainCount, Constant.testCount);

           /*

                最后得出的评估值越小,说明推荐结果越好

                最后的评价结果是0.943877551020408,表示的是平均与真实结果的差值是0.9.

           */

           System.out.println("平均绝对误差MAE"+score);

          

        /*

                计算推荐4个结果时的查准率和召回率,使用评估器,并设定评估期的参数

                4表示"precision and recall at 4"即相当于推荐top4,然后在top-4的推荐上计算准确率和召回率

                查准率为0.75 上面设置的参数为4,表示 Precision at 4(推荐4个结果时的查准率),平均有3/4的推荐结果是好的

            Recall at 4 推荐两个结果的查全率是1.0 表示所有的好的推荐都包含在这些推荐结果中

          */

           RandomUtils.useTestSeed();

           RecommenderIRStatsEvaluator statsEvaluator = new GenericRecommenderIRStatsEvaluator();

          IRStatistics stats = statsEvaluator.evaluate(builder, null, DataModelUtil.getDataModel(),

               null, Constant.cfCount, GenericRecommenderIRStatsEvaluator.CHOOSE_THRESHOLD, 1.0);

          System.out.println("查准率:"+stats.getPrecision());

          System.out.println("召回率:"+stats.getRecall());

          

      } catch (Exception e) {

        e.printStackTrace();

      }

      System.out.println("计算平均绝对误差MAE、查准率、召回率结束");

   }

  

}

三、运行结果

1、用户-电影评分矩阵:

2、用户相似度:

3、用户最近邻:

4、推荐结果:

5、MAE、precision、recall结果:

源代码附件:https://download.csdn.net/download/u011291472/13056062

这篇关于基于用户的协同过滤推荐算法单机版代码实现(包含输出用户-评分矩阵模型、用户间相似度、最近邻居、推荐结果、平均绝对误差MAE、查准率、召回率)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1028648

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、