雪花算法详解及源码分析

2024-06-03 23:44

本文主要是介绍雪花算法详解及源码分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

雪花算法的简介:

雪花算法用来实现全局唯一ID的业务主键,解决分库分表之后主键的唯一性问题,所以就单从全局唯一性来说,其实有很多的解决方法,比如说UUID、数据库的全局表的自增ID

但是在实际的开发过程中,我们的id除了唯一性以外,还需要去满足有序递增,高性能,高可用,以及需要时间戳等这样一些特征,而雪花算法就是一个比较符合这个一类特征的全局唯一算法。

雪花算法结构的详解:

它是一个通过64个bit位 组成的一个long类型的数字,可以将它分为四个部分,根据这四个部分的规则,生成对应的bit位的一个数据,然后组装在一起,形成一个全局的唯一id。

第一部分:是一个bit:这个是正负号,正常情况下为零,通常无意义

1)不用 1bit:是不用的

因为二进制里第一个bit位如果是1,那么都是复数,但是我们生成的id都是正数,所以第一个bit统一都是0

第二部分:是41个bit:表示的是时间戳

2)时间戳 41bit:表示的是时间戳,单位是毫秒

41bit表示的数字多达2^41-1,也就是可以标识2^41-1个毫秒值,换算成年表示就是69年的时间。

第三、四部分:是5+5个bit:表示的是机房id以及机器id、

3)+4)工作机器Id 10bit:记录工作机器的id,表示的是这个服务最多可以部署在2^10台机器上,也就是1024台机器。

但是10bit里5个bit代表机房id,5个bit代表机器id。意思就是最多代表2^个机房(32个机房),每个机房可以代表2^5和机器(32台机器),也可以根据实际情况确定

第五部分:是12个bit:表示的序号,就是某个机房中某个机器上这一毫秒内同时生成的id的序号,0000 0000 0000

12bit可以代表的最大正整数是2^12-1=4096,也就是说可以用这个12bit代表的数字来区分同一个毫秒内的4096个不同的id。

源码:

public class SnowFlakeUtil01 {// 起始时间戳 (可以自定义)private final long twepoch = 1288834974657L;// 机器ID所占的位数private final long workerIdBits = 5L;// 数据中心ID所占的位数private final long datacenterIdBits = 5L;// 支持的最大机器ID,结果是31 (这个移位算法可以计算最大值:-1L ^ (-1L << workerIdBits))private final long maxWorkerId = -1L ^ (-1L << workerIdBits);// 支持的最大数据中心ID,结果是31private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);// 序列在ID中占的位数private final long sequenceBits = 12L;// 机器ID左移位数private final long workerIdShift = sequenceBits;// 数据中心ID左移位数private final long datacenterIdShift = sequenceBits + workerIdBits;// 时间戳左移位数private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;// 生成序列的掩码,这里为4095 (0b111111111111=0xfff=4095)private final long sequenceMask = -1L ^ (-1L << sequenceBits);// 工作机器ID(0~31)private long workerId;// 数据中心ID(0~31)private long datacenterId;// 毫秒内序列(0~4095)private long sequence = 0L;// 上次生成ID的时间戳private long lastTimestamp = -1L;// 构造函数public SnowFlakeUtil01(long workerId, long datacenterId) {// 检查workerId是否在合法范围内if (workerId > maxWorkerId || workerId < 0) {throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));}// 检查datacenterId是否在合法范围内if (datacenterId > maxDatacenterId || datacenterId < 0) {throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));}this.workerId = workerId;this.datacenterId = datacenterId;}/*** 获得下一个ID (该方法是线程安全的)* @return SnowflakeId*/public synchronized long nextId() {long timestamp = timeGen();// 如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常if (timestamp < lastTimestamp) {throw new RuntimeException(String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));}// 如果是同一时间生成的,则进行毫秒内序列if (lastTimestamp == timestamp) {// 如果毫秒相同,则从0递增生成序列号sequence = (sequence + 1) & sequenceMask;// 毫秒内序列溢出if (sequence == 0) {// 阻塞到下一个毫秒,获得新的时间戳timestamp = tilNextMillis(lastTimestamp);}}// 时间戳改变,毫秒内序列重置else {sequence = 0L;}// 上次生成ID的时间戳lastTimestamp = timestamp;// 移位并通过或运算拼到一起组成64位的IDreturn ((timestamp - twepoch) << timestampLeftShift) // 时间戳部分| (datacenterId << datacenterIdShift)       // 数据中心部分| (workerId << workerIdShift)               // 机器ID部分| sequence;                                 // 序列号部分}// 阻塞到下一个毫秒,直到获得新的时间戳protected long tilNextMillis(long lastTimestamp) {long timestamp = timeGen();while (timestamp <= lastTimestamp) {timestamp = timeGen();}return timestamp;}// 返回当前时间,以毫秒为单位protected long timeGen() {return System.currentTimeMillis();}//    public static void main(String[] args) {
//        SnowFlakeUtil snowFlakeUtil = new SnowFlakeUtil(0, 0);
//        for (int i = 0; i < 100; i++) {
//            long id = snowFlakeUtil.nextId();
//            System.out.println(id);
//        }
//    }
}

这篇关于雪花算法详解及源码分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1028448

相关文章

Linux线程同步/互斥过程详解

《Linux线程同步/互斥过程详解》文章讲解多线程并发访问导致竞态条件,需通过互斥锁、原子操作和条件变量实现线程安全与同步,分析死锁条件及避免方法,并介绍RAII封装技术提升资源管理效率... 目录01. 资源共享问题1.1 多线程并发访问1.2 临界区与临界资源1.3 锁的引入02. 多线程案例2.1 为

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

idea的终端(Terminal)cmd的命令换成linux的命令详解

《idea的终端(Terminal)cmd的命令换成linux的命令详解》本文介绍IDEA配置Git的步骤:安装Git、修改终端设置并重启IDEA,强调顺序,作为个人经验分享,希望提供参考并支持脚本之... 目录一编程、设置前二、前置条件三、android设置四、设置后总结一、php设置前二、前置条件

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3