【大模型应用开发极简入门】构建新闻稿生成器:提示词的使用与基于事实的提示词

本文主要是介绍【大模型应用开发极简入门】构建新闻稿生成器:提示词的使用与基于事实的提示词,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 一. 提示词怎么写
    • 二. 完整代码
    • 三. 基于事实的prompt

GPT-4和ChatGPT等LLM专用于生成文本。我们可以使用GPT-4和ChatGPT在各种场景中生成文本,举例如下。

  • 电子邮件
  • 合同或正式文档
  • 创意写作
  • 逐步行动计划
  • 头脑风暴
  • 广告
  • 职位描述

对于本项目,我们将创建一个工具,它可以根据一系列事实生成新闻稿。我们可以根据目标媒体和受众选择新闻稿的篇幅、语调和风格。

一. 提示词怎么写

这里主要描述prompt(提示词)的构建逻辑,因为大模型可以根据prompt的规定生成符合要求的文档。

  1. 给AI模型分配一个角色,并尽可能精确地描述任务。如下给AI模型分配的角色是记者助手:
prompt_role = "You are an assistant for journalists. \Your task is to write articles, based on the FACTS that are \given to you. \You should respect the instructions: the TONE, the LENGTH, \and the STYLE"
  1. 其他规定
  • prompt_role:角色的描述,以便大模型能够按照角色回答
  • FACTS:基于给定的事实数据来回答
  • TONE:回答风格:这里是informal
  • LENGTH:回答的单词数
  • STYLE:生成的文本格式:这里是blogpost
# 拼装messages,规定了prompt的格式:  
# prompt_role:角色的描述,以便大模型能够按照角色回答  
# FACTS:基于给定的事实数据来回答  
# TONE:回答风格:这里是informal  
# LENGTH:回答的单词数  
# STYLE:生成的文本格式:这里是blogpost  
def assist_journalist(  facts: List[str], tone: str, length_words: int, style: str  
):  facts = ", ".join(facts)  prompt = f"{prompt_role} \  FACTS: {facts} \  TONE: {tone} \  LENGTH: {length_words} words \  STYLE: {style}"  return ask_chatgpt([{"role": "user", "content": prompt}])

 

二. 完整代码

import os  import openai  
from typing import List  openai.api_key = os.getenv('OPENAI_API_KEY')  # 调用openai api  
def ask_chatgpt(messages):  response = openai.ChatCompletion.create(  model="gpt-3.5-turbo", messages=messages  )  return response["choices"][0]["message"]["content"]  # prompt_role描述  
prompt_role = "You are an assistant for journalists. \  Your task is to write articles, based on the FACTS that are \  given to you. \  You should respect the instructions: the TONE, the LENGTH, \  and the STYLE"  # 拼装messages,规定了prompt的格式:  
# prompt_role:角色的描述,以便大模型能够按照角色回答  
# FACTS:基于给定的事实数据来回答  
# TONE:回答风格:这里是informal  
# LENGTH:回答的单词数  
# STYLE:生成的文本格式:这里是blogpost  
def assist_journalist(  facts: List[str], tone: str, length_words: int, style: str  
):  facts = ", ".join(facts)  prompt = f"{prompt_role} \  FACTS: {facts} \  TONE: {tone} \  LENGTH: {length_words} words \  STYLE: {style}"  return ask_chatgpt([{"role": "user", "content": prompt}])  print(  assist_journalist(  ["The sky is blue", "The grass is green"], "informal", \  100, "blogpost"  )  
)

 

输出如下


"Hey, everyone! Did you know that the sky is blue and the grass is green?
I mean, it's something we see every day and probably take for granted,
but it's still pretty amazing if you think about it! The sky appears
blue to us because of something called Rayleigh scattering – basically,
the molecules in the Earth's atmosphere scatter sunlight in all different
directions. Blue light has a shorter wavelength, so it gets scattered
more than the other colors in the spectrum. That's why the sky looks
blue most of the time! As for the grass being green... that's due to
chlorophyll, the pigment that helps plants capture sunlight to make
their food. Chlorophyll absorbs red and blue light, but reflects
green light, which is why we see plants as green.It's pretty cool how science explains these things we take for granted,
don't you think? Next time you're outside, take a moment to appreciate
the color palette around you!"

 

三. 基于事实的prompt

通过明确facts数据,让GPT基于事实来回答。

print(assist_journalist(# 这里让facts=["A book on ChatGPT has been published last week","The title is Developing Apps with GPT-4 and ChatGPT","The publisher is O'Reilly.",],tone="excited",length_words=50,style="news flash",)
)

结果如下:

Exciting news for tech enthusiasts! O'Reilly has just published a
new book on ChatGPT called "Developing Apps with GPT-4 and ChatGPT".
Get ready to delve into the world of artificial intelligence and learn
how to develop apps using the latest technology. Don't miss out on this
opportunity to sharpen your skills!

 

这篇关于【大模型应用开发极简入门】构建新闻稿生成器:提示词的使用与基于事实的提示词的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1025763

相关文章

Java Stream流之GroupBy的用法及应用场景

《JavaStream流之GroupBy的用法及应用场景》本教程将详细介绍如何在Java中使用Stream流的groupby方法,包括基本用法和一些常见的实际应用场景,感兴趣的朋友一起看看吧... 目录Java Stream流之GroupBy的用法1. 前言2. 基础概念什么是 GroupBy?Stream

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

C#中lock关键字的使用小结

《C#中lock关键字的使用小结》在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时,其他线程无法访问同一实例的该代码块,下面就来介绍一下lock关键字的使用... 目录使用方式工作原理注意事项示例代码为什么不能lock值类型在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时

PyQt5 GUI 开发的基础知识

《PyQt5GUI开发的基础知识》Qt是一个跨平台的C++图形用户界面开发框架,支持GUI和非GUI程序开发,本文介绍了使用PyQt5进行界面开发的基础知识,包括创建简单窗口、常用控件、窗口属性设... 目录简介第一个PyQt程序最常用的三个功能模块控件QPushButton(按钮)控件QLable(纯文本

MySQL 强制使用特定索引的操作

《MySQL强制使用特定索引的操作》MySQL可通过FORCEINDEX、USEINDEX等语法强制查询使用特定索引,但优化器可能不采纳,需结合EXPLAIN分析执行计划,避免性能下降,注意版本差异... 目录1. 使用FORCE INDEX语法2. 使用USE INDEX语法3. 使用IGNORE IND

C# $字符串插值的使用

《C#$字符串插值的使用》本文介绍了C#中的字符串插值功能,详细介绍了使用$符号的实现方式,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录$ 字符使用方式创建内插字符串包含不同的数据类型控制内插表达式的格式控制内插表达式的对齐方式内插表达式中使用转义序列内插表达式中使用

C#中的Converter的具体应用

《C#中的Converter的具体应用》C#中的Converter提供了一种灵活的类型转换机制,本文详细介绍了Converter的基本概念、使用场景,具有一定的参考价值,感兴趣的可以了解一下... 目录Converter的基本概念1. Converter委托2. 使用场景布尔型转换示例示例1:简单的字符串到