【Python】使用 Pandas 统计每行数据中的空值

2024-06-03 00:44

本文主要是介绍【Python】使用 Pandas 统计每行数据中的空值,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


缘分让我们相遇乱世以外
命运却要我们危难中相爱
也许未来遥远在光年之外
我愿守候未知里为你等待
我没想到为了你我能疯狂到
山崩海啸没有你根本不想逃
我的大脑为了你已经疯狂到
脉搏心跳没有你根本不重要
                     🎵 邓紫棋《光年之外》


在数据分析和处理的过程中,处理缺失数据(NaN 值)是一个非常常见的问题。缺失数据会影响分析结果的准确性,因此在数据清理阶段,我们通常需要统计并处理这些缺失值。Pandas 提供了一系列的方法来处理和分析缺失数据。本文将介绍如何使用 Pandas 统计每行数据中的空值。

什么是空值?

在 Pandas 中,空值通常用 NaN(Not a Number)表示。空值可以出现在任何数据类型中,包括数值、字符串、日期等。空值可能是由于数据采集不完整、数据输入错误或其他原因引起的。

为什么要统计空值?

统计空值的目的是为了了解数据的完整性,帮助我们决定如何处理这些缺失值。我们可以选择删除含有大量缺失值的行或列,也可以选择用其他值(如均值、中位数或特定值)填充这些缺失值。

准备工作

首先,我们需要安装 Pandas 库。如果你还没有安装,可以使用以下命令进行安装:

pip install pandas

创建示例数据

我们将创建一个包含一些空值的示例 DataFrame,以便进行演示。

import pandas as pd
import numpy as np# 创建示例 DataFrame
data = {'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eva'],'Age': [24, np.nan, 22, np.nan, 28],'City': ['New York', 'Los Angeles', np.nan, 'Chicago', 'Houston'],'Score': [85, 92, np.nan, 70, np.nan]
}df = pd.DataFrame(data)
print("原始数据:")
print(df)

输出:

原始数据:Name   Age         City  Score
0     Alice  24.0     New York   85.0
1       Bob   NaN  Los Angeles   92.0
2   Charlie  22.0          NaN    NaN
3     David   NaN      Chicago   70.0
4       Eva  28.0      Houston    NaN

统计每行空值数量

使用 isnull() 方法可以检测 DataFrame 中的空值,并返回一个布尔值 DataFrame,其中 True 表示空值,False 表示非空值。然后使用 sum(axis=1) 统计每行的空值数量。

# 统计每行的空值数量
df['Missing Values'] = df.isnull().sum(axis=1)
print("每行空值数量:")
print(df)

输出:

每行空值数量:Name   Age         City  Score  Missing Values
0     Alice  24.0     New York   85.0               0
1       Bob   NaN  Los Angeles   92.0               1
2   Charlie  22.0          NaN    NaN               2
3     David   NaN      Chicago   70.0               1
4       Eva  28.0      Houston    NaN               1

进一步分析

有了每行的空值数量,我们可以进一步分析数据集的完整性。例如,我们可以过滤出那些空值较多的行,以便进一步处理。

# 筛选出含有空值的行
rows_with_missing_values = df[df['Missing Values'] > 0]
print("含有空值的行:")
print(rows_with_missing_values)

输出:

含有空值的行:Name   Age         City  Score  Missing Values
1       Bob   NaN  Los Angeles   92.0               1
2   Charlie  22.0          NaN    NaN               2
3     David   NaN      Chicago   70.0               1
4       Eva  28.0      Houston    NaN               1

处理空值

处理空值有多种方法,具体方法取决于业务需求和数据特点。常见的处理方法包括:

删除含有空值的行:

df_dropped = df.dropna()
print("删除含有空值的行后的数据:")
print(df_dropped)

填充空值:
可以使用均值、中位数、众数或其他特定值填充空值。例如,使用列的均值填充空值:

df_filled = df.fillna(df.mean())
print("填充空值后的数据:")
print(df_filled)

总结

在数据分析和处理过程中,统计和处理缺失数据是一个重要的步骤。通过 Pandas 提供的功能,我们可以轻松地统计每行数据中的空值,并根据具体情况选择适当的方法处理这些空值。希望本文能够帮助你更好地理解和应用 Pandas 处理缺失数据。

这篇关于【Python】使用 Pandas 统计每行数据中的空值的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1025556

相关文章

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三