【机器学习】基于OpenCV和TensorFlow的MobileNetV2模型的物种识别与个体相似度分析

本文主要是介绍【机器学习】基于OpenCV和TensorFlow的MobileNetV2模型的物种识别与个体相似度分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在计算机视觉领域,物种识别和图像相似度比较是两个重要的研究方向。本文通过结合深度学习和图像处理技术,基于OpenCV和TensorFlow的MobileNetV2的预训练模型模,实现物种识别和个体相似度分析。本文详细介绍该实验过程并提供相关代码。


一、名词介绍

1. OpenCV

OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库。OpenCV由英特尔公司在1999年发起,并在2000年以开源的方式发布。该库被设计为高效的计算机视觉应用程序开发工具,支持多种编程语言(如C++、Python、Java)和平台(如Windows、Linux、Mac OS、Android、iOS)。

使用OpenCV具有以下优势:

  • 开源和免费:OpenCV是完全开源和免费的,这使得开发者可以自由地使用、修改和分发。
  • 跨平台:OpenCV支持多个操作系统和平台,包括Windows、Linux、Mac OS、Android和iOS,使其在多种设备上具有广泛的适用性。
  • 丰富的功能:OpenCV提供了广泛的功能,包括图像处理、视频分析、物体检测、机器学习、计算机视觉算法等,满足了大多数计算机视觉应用的需求。
  • 大规模社区支持:OpenCV拥有一个活跃的社区,提供丰富的文档、教程和示例代码,开发者可以方便地获取支持和资源。
  • 性能优化:OpenCV对性能进行了高度优化,支持硬件加速(如GPU),能够在实时应用中高效运行。

2. TensorFlow

TensorFlow是一个由Google Brain团队开发的开源深度学习框架。它提供了全面、灵活的工具,支持构建和训练各种深度学习模型。TensorFlow支持多种平台,包括Windows、Linux、Mac OS和移动设备,并且可以利用CPU和GPU进行高效计算。

使用TensorFlow具有以下优势:

  • 灵活性和可扩展性:TensorFlow支持构建和训练各种类型的深度学习模型,从简单的线性模型到复杂的神经网络。
  • 跨平台支持:TensorFlow支持在多个平台上运行,包括桌面系统、服务器和移动设备,并且可以利用GPU和TPU进行加速。
  • 广泛的社区和生态系统:TensorFlow拥有一个庞大的社区,提供丰富的资源和支持。其生态系统包括TensorBoard(用于可视化)、TensorFlow Lite(用于移动设备)和TensorFlow Serving(用于部署)。
  • 预训练模型和模型库:TensorFlow提供了大量的预训练模型和模型库,可以方便地进行迁移学习和模型优化。

3. OpenCV与同类视库对比

下表对比了OpenCV与其他几种常见的计算机视觉库(如Dlib、SimpleCV和Scikit-Image)的特点:

特性OpenCVDlibSimpleCVScikit-Image
开源和免费
跨平台支持Windows, Linux, Mac OS, Android, iOSWindows, Linux, Mac OSWindows, Linux, Mac OSWindows, Linux, Mac OS
编程语言支持C++, Python, Java, MATLABC++, PythonPythonPython
图像处理广泛支持支持基础支持广泛支持
视频处理广泛支持不支持基础支持不支持
机器学习算法支持(集成了OpenCV ML模块)支持(内置多种机器学习算法)基础支持支持(依赖Scikit-Learn)
面部检测支持(Haar级联分类器、DNN)支持(HOG+SVM、CNN)支持基础支持(依赖外部库)
性能优化高度优化,支持硬件加速一定程度优化,部分支持硬件加速未优化一定程度优化
社区支持活跃社区,大量资源中等规模社区小规模社区中等规模社区

二、环境准备

1. 搭建python环境

为了避免和历史包版本的冲突,这里我先新建了一个新的conda环境,起名opencv。

python环境为3.8.19。
在这里插入图片描述

升级pipsetuptools,规避后面可能发生的包版本冲突等安装问题。
在这里插入图片描述


2. 安装必要的库

下面,我安装了程序依赖的必要库。因为我是边摸索边安装,所以没有一次性全部安装这些库,你可以全部浏览完本节内容后一口气安装。

用到的库及介绍:

库名称介绍
Flask一个轻量级的Web框架,用于构建Web应用程序和API。
Flask-CORS一个Flask扩展,用于处理跨域资源共享(CORS)问题,使得前端可以访问后端API。
NumPy一个用于科学计算的库,提供支持大型多维数组和矩阵的操作,以及大量的数学函数库。
OpenCV一个开源计算机视觉库,提供丰富的图像和视频处理功能。
TensorFlow一个开源的机器学习框架,用于构建和训练各种机器学习模型。
Keras高级神经网络API,运行在TensorFlow之上,用于快速构建和训练深度学习模型。
Scikit-learn一个用于机器学习的Python库,提供简单高效的数据挖掘和数据分析工具,包括各种分类、回归和聚类算法。

下面是逐步安装的步骤:

① 安装flask、numpy、opencv-python库

pip install flask numpy opencv-python

在这里插入图片描述

② 安装flask-cors库

安装这个库主要原因是解决请求flask时的跨域问题。

pip install flask-cors

在这里插入图片描述

③ 安装tensorflow、keras库

tensorflow 是常用的深度学习框架。Keras 是一个高级神经网络 API,它能够以 TensorFlow, CNTK 或者 Theano 作为后端运行。

pip install tensorflow keras

在这里插入图片描述

④ 安装scikit-learn库

scikit-learn是一个用于机器学习的Python库,提供简单高效的数据挖掘和数据分析工具,包括各种分类、回归和聚类算法。

pip install scikit-learn

在这里插入图片描述

⑤ 安装cosine_similarity库

该库用于个体相似度比较。

pip install cosine_similarity

在这里插入图片描述


三、搭建Flask服务器

1. 编写图像识别python代码

创建一个名为app.py的文件,编写如下代码:

from flask import Flask, request, jsonify
from flask_cors import CORS
import numpy as np
import cv2
from tensorflow.keras.applications.mobilenet_v2 import MobileNetV2, preprocess_input, decode_predictions
from tensorflow.keras.preprocessing import image
from sklearn.metrics.pairwise import cosine_similarityapp = Flask(__name__)
CORS(app)# 加载预训练的MobileNetV2模型
model = MobileNetV2(weights='imagenet', include_top=True)def classify_image(img):img = cv2.resize(img, (224, 224))  # MobileNetV2的输入尺寸为224x224x = image.img_to_array(img)x = np.expand_dims(x, axis=0)x = preprocess_input(x)preds = model.predict(x)return decode_predictions(preds, top=1)[0][0][1], model.predict(x)  # 返回类别名称和特征向量def calculate_similarity(feature1, feature2):return cosine_similarity(feature1, feature2)[0][0]@app.route('/compare', methods=['POST'])
def compare_images():file1 = request.files['image1']file2 = request.files['image2']npimg1 = np.frombuffer(file1.read(), np.uint8)npimg2 = np.frombuffer(file2.read(), np.uint8)img1 = cv2.imdecode(npimg1, cv2.IMREAD_COLOR)img2 = cv2.imdecode(npimg2, cv2.IMREAD_COLOR)# 分类和特征提取class1, feature1 = classify_image(img1)class2, feature2 = classify_image(img2)if class1 != class2:similarity = 0.0risk_level = "低"intervention = "否"else:similarity = calculate_similarity(feature1, feature2)risk_level = "高" if similarity > 0.8 else "中" if similarity > 0.5 else "低"intervention = "是" if similarity > 0.8 else "否"return jsonify({'similarity': f'{similarity * 100:.2f}%','risk_level': risk_level,'intervention': intervention,'class1': class1,'class2': class2})if __name__ == '__main__':app.run(debug=True)

2. 运行Flask服务器

再Anaconda中启动opencv环境的终端,运行以下命令启动Flask服务器:

python app.py

在这里插入图片描述
服务器启动后,将会监听在本地的5000端口。

四、浏览器客户端调用

1. 页面前端代码实现

创建一个HTML文件(test.html),实现图片上传和结果展示功能,全部代码如下:

<!DOCTYPE html>
<html lang="zh-CN">
<head><meta charset="UTF-8"><title>图片对比</title><style>body {font-family: Arial, sans-serif;display: flex;flex-direction: column;align-items: center;margin: 0;padding: 20px;}.container {display: flex;justify-content: space-between;width: 80%;margin-bottom: 20px;}.image-box {width: 45%;border: 2px dashed #ccc;padding: 10px;text-align: center;position: relative;}.image-box img {max-width: 100%;max-height: 200px;display: none;}.image-box input {display: none;}.upload-btn {cursor: pointer;color: #007BFF;text-decoration: underline;}.loading-bar {width: 80%;height: 20px;background-color: #f3f3f3;border: 1px solid #ccc;margin-top: 10px;display: none;position: relative;}.loading-bar div {width: 0;height: 100%;background-color: #4caf50;position: absolute;animation: loading 5s linear forwards;}@keyframes loading {to {width: 100%;}}.result {display: none;margin-top: 20px;}</style>
</head>
<body><h1>图片对比</h1><div class="container"><div class="image-box" id="box1"><label for="upload1" class="upload-btn">上传图片</label><input type="file" id="upload1" accept="image/*"><img id="image1" alt="左边文本抓取图片"></div><div class="image-box" id="box2"><label for="upload2" class="upload-btn">上传图片</label><input type="file" id="upload2" accept="image/*"><img id="image2" alt="右边文本数据库图片"></div></div><button id="compare-btn">人工智能对比</button><div class="loading-bar" id="loading-bar"><div></div></div><div class="result" id="result"><p>相似百分比: <span id="similarity">0%</span></p><p>相似度: <span id="risk-level"></span></p><p>相同个体推测: <span id="intervention"></span></p><p>1种类: <span id="class1">-</span></p><p>2种类: <span id="class2">-</span></p></div><script>document.getElementById('upload1').addEventListener('change', function(event) {loadImage(event.target.files[0], 'image1', 'box1');});document.getElementById('upload2').addEventListener('change', function(event) {loadImage(event.target.files[0], 'image2', 'box2');});function loadImage(file, imgId, boxId) {const reader = new FileReader();reader.onload = function(e) {const img = document.getElementById(imgId);img.src = e.target.result;img.style.display = 'block';document.querySelector(`#${boxId} .upload-btn`).style.display = 'none';}reader.readAsDataURL(file);}document.getElementById('compare-btn').addEventListener('click', function() {const loadingBar = document.getElementById('loading-bar');const result = document.getElementById('result');const image1 = document.getElementById('upload1').files[0];const image2 = document.getElementById('upload2').files[0];if (!image1 || !image2) {alert('请上传两张图片进行对比');return;}const formData = new FormData();formData.append('image1', image1);formData.append('image2', image2);loadingBar.style.display = 'block';result.style.display = 'none';fetch('http://localhost:5000/compare', {method: 'POST',body: formData}).then(response => response.json()).then(data => {loadingBar.style.display = 'none';result.style.display = 'block';document.getElementById('similarity').innerText = data.similarity;document.getElementById('risk-level').innerText = data.risk_level;document.getElementById('intervention').innerText = data.intervention;document.getElementById('class1').innerText = data.class1;document.getElementById('class2').innerText = data.class2;}).catch(error => {loadingBar.style.display = 'none';alert('对比过程中发生错误,请重试');console.error('Error:', error);});});</script>
</body>
</html>

2. 运行网页

双击运行,刚刚创建的test.html文件,效果如图:
在这里插入图片描述
上传左右图片,点击对比:
在这里插入图片描述

可以看到两只品种明显不同的狗相似度为0。

再比较两只相同品种的狗的相似度:
在这里插入图片描述

可以看到系统识别出了两只狗的种类相同,相似比也高达75.2%,但因为没有达到我们设置的80%的阈值,所以判断非同一个体。当然,这里的80%非常牵强,实际操作中难免误差较大。由于本文算法使用的是MobileNetV2预训练模型,并没有根据实际应用场景大量训练和调参,所以如果投入应用,仍需重新训练并根据实际效果定义阈值。

同一物种的识别结果:
在这里插入图片描述


五、实验总结

本文介绍了基于OpenCV和深度学习的物种识别和个体相似度比较方法。通过使用预训练的MobileNetV2模型进行特征提取和分类,并结合余弦相似度计算,实现了物种识别和相似度比较。此方法在计算机视觉领域具有广泛的应用前景,可以用于各种图像识别和比较任务。

通过本文的示例代码,你可以快速搭建一个图像识别和比较系统,并根据需要进行进一步的优化和扩展。如果在实现过程中遇到问题,请随时联系我获取更多帮助。

这篇关于【机器学习】基于OpenCV和TensorFlow的MobileNetV2模型的物种识别与个体相似度分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1025256

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

OpenCV在Java中的完整集成指南分享

《OpenCV在Java中的完整集成指南分享》本文详解了在Java中集成OpenCV的方法,涵盖jar包导入、dll配置、JNI路径设置及跨平台兼容性处理,提供了图像处理、特征检测、实时视频分析等应用... 目录1. OpenCV简介与应用领域1.1 OpenCV的诞生与发展1.2 OpenCV的应用领域2

在Java中使用OpenCV实践

《在Java中使用OpenCV实践》用户分享了在Java项目中集成OpenCV4.10.0的实践经验,涵盖库简介、Windows安装、依赖配置及灰度图测试,强调其在图像处理领域的多功能性,并计划后续探... 目录前言一 、OpenCV1.简介2.下载与安装3.目录说明二、在Java项目中使用三 、测试1.测

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种