使用Druid的sql parser做一个表数据血缘分析工具

2024-06-02 16:48

本文主要是介绍使用Druid的sql parser做一个表数据血缘分析工具,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


版权
前言
大数据场景下,每天可能都要在离线集群,运行大量的任务来支持业务、运营的分析查询。任务越来越多的时候,就会有越来越多的依赖关系,每一个任务都需要等需要的input表生产出来后,再去生产自己的output表。最开始的时候,依赖关系自然是可以通过管理员来管理,随着任务量的加大,就需要一个分析工具来解析任务的inputs、outs,并且自行依赖上生产inputs表的那些任务。本文就介绍一个使用druid parser,来解析SQL的input、output的血缘分析工具。

建议对druid比较陌生的同学可以先看下druid的官方文档。

做一次sql的血缘分析的流程
解析sql,拿到抽象语法树
遍历抽象语法树,得到from、to
使用druid解析sql到语法树
druid提供了简单、快速的SQL解析工具,可以很简单拿到一段SQL的AST(抽象语法树)。而druid对语法树提供了多种的SQLStatement,使遍历语法树更加容易。

 SQLStatementParser parser = SQLParserUtils.createSQLStatementParser(sql, JdbcConstants.HIVE);
 SQLStatement stmt= parser.parseStatementList().get(0);
1
2
从语法树中取出from和to
拿到语法树之后,想办法把from、to从语法树中取出来就大功告成。

最初的写法
最开始,就是简单的遍历一下语法树的节点,取出from表和to表的表名。

    /**
     * 根据create或者insert的sql取出from、to
     * @param sql
     * @return
     * @throws ParserException
     */
    private static Map<String, Set<String>> getFromTo(String sql) throws ParserException {
        SQLStatementParser parser = SQLParserUtils.createSQLStatementParser(sql, JdbcConstants.HIVE);
        SQLStatement stmt= parser.parseStatementList().get(0);

        Set<String> from = new HashSet<>();
        Set<String> to = new HashSet<>();
        if (stmt instanceof SQLInsertStatement) {
            SQLInsertStatement istmt = (SQLInsertStatement) stmt;
            to.add(istmt.getTableSource().toString().toUpperCase());

            SQLTableSource sts = istmt.getQuery().getQueryBlock().getFrom();
            from = getFromTableFromTableSource(sts);
        } else if (stmt instanceof SQLCreateTableStatement) {
            SQLCreateTableStatement cstmt = (SQLCreateTableStatement) stmt;
            to.add(cstmt.getTableSource().toString().toUpperCase());

            SQLTableSource sts = cstmt.getSelect().getQueryBlock().getFrom();
            from = getFromTableFromTableSource(sts);
        }

        Map<String, Set<String>> fromTo = new HashMap<>(4);
        fromTo.put("from", from);
        fromTo.put("to", to);
        return fromTo;
    }

    private static Set<String> getFromTableFromTableSource (SQLTableSource sts) {
        Set<String> from = new HashSet<>();
        if (sts instanceof SQLJoinTableSource) {
            from = getFromTableFromJoinSource((SQLJoinTableSource)sts);
        } else {
            from.add(sts.toString().toUpperCase());
        }
        return from;
    }

    private static Set<String> getFromTableFromJoinSource (SQLJoinTableSource sjts) {
        Set<String> result = new HashSet<>();
        getFromTable(result, sjts);
        return result;
    }

    // 递归获取join的表list
    private static void getFromTable (Set<String> fromList, SQLJoinTableSource sjts) {
        SQLTableSource left = sjts.getLeft();
        if (left instanceof SQLJoinTableSource) {
            getFromTable(fromList, (SQLJoinTableSource)left);
        } else {
            fromList.add(left.toString().toUpperCase());
        }
        SQLTableSource right = sjts.getRight();
        if (right instanceof SQLJoinTableSource) {
            getFromTable(fromList, (SQLJoinTableSource)right);
        } else {
            fromList.add(right.toString().toUpperCase());
        }
    }

用druid更好的实现
因为是为了快速完成,所以写的取出from、to表的部分还是存在很大的问题的。只能支持一条sql,只能支持简单的sql语句,比如union all或者子查询就有些无力。于是又看了一下文档,其实druid是提供了visitor方法来遍历语法树的,而且提供了一个简单的SchemaStatVisitor,可以取出Sql中所有用到的表。于是就可以写成这种格式。

public static Map<String, TreeSet<String>> getFromTo (String sql) throws ParserException {
        List<SQLStatement> stmts = SQLUtils.parseStatements(sql, JdbcConstants.HIVE);
        TreeSet<String> fromSet = new TreeSet<>();
        TreeSet<String> toSet = new TreeSet<>();
        if (stmts == null) {
            return null;
        }

        String database="DEFAULT";
        for (SQLStatement stmt : stmts) {
            SchemaStatVisitor statVisitor = SQLUtils.createSchemaStatVisitor(JdbcConstants.HIVE);
            if (stmt instanceof SQLUseStatement) {
                database = ((SQLUseStatement) stmt).getDatabase().getSimpleName().toUpperCase();
            }
            stmt.accept(statVisitor);
            Map<Name, TableStat> tables = statVisitor.getTables();
            if (tables != null) {
                final String db = database;
                tables.forEach((tableName, stat) -> {
                    if (stat.getCreateCount() > 0 || stat.getInsertCount() > 0) {
                        String to = tableName.getName().toUpperCase();
                        if (!to.contains("."))
                            to = db + "." + to;
                        toSet.add(to);
                    } else if (stat.getSelectCount() > 0) {
                        String from = tableName.getName().toUpperCase();
                        if (!from.contains("."))
                            from = db + "." + from;
                        fromSet.add(from);
                    }
                });
            }
        }
 

这篇关于使用Druid的sql parser做一个表数据血缘分析工具的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1024535

相关文章

Spring Boot整合Redis注解实现增删改查功能(Redis注解使用)

《SpringBoot整合Redis注解实现增删改查功能(Redis注解使用)》文章介绍了如何使用SpringBoot整合Redis注解实现增删改查功能,包括配置、实体类、Repository、Se... 目录配置Redis连接定义实体类创建Repository接口增删改查操作示例插入数据查询数据删除数据更

Mysql数据库聚簇索引与非聚簇索引举例详解

《Mysql数据库聚簇索引与非聚簇索引举例详解》在MySQL中聚簇索引和非聚簇索引是两种常见的索引结构,它们的主要区别在于数据的存储方式和索引的组织方式,:本文主要介绍Mysql数据库聚簇索引与非... 目录前言一、核心概念与本质区别二、聚簇索引(Clustered Index)1. 实现原理(以 Inno

sqlserver、mysql、oracle、pgsql、sqlite五大关系数据库的对象名称和转义字符

《sqlserver、mysql、oracle、pgsql、sqlite五大关系数据库的对象名称和转义字符》:本文主要介绍sqlserver、mysql、oracle、pgsql、sqlite五大... 目录一、转义符1.1 oracle1.2 sqlserver1.3 PostgreSQL1.4 SQLi

使用python生成固定格式序号的方法详解

《使用python生成固定格式序号的方法详解》这篇文章主要为大家详细介绍了如何使用python生成固定格式序号,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录生成结果验证完整生成代码扩展说明1. 保存到文本文件2. 转换为jsON格式3. 处理特殊序号格式(如带圈数字)4

Java使用Swing生成一个最大公约数计算器

《Java使用Swing生成一个最大公约数计算器》这篇文章主要为大家详细介绍了Java使用Swing生成一个最大公约数计算器的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下... 目录第一步:利用欧几里得算法计算最大公约数欧几里得算法的证明情形 1:b=0情形 2:b>0完成相关代码第二步:加

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的