用贪心算法计算十进制数转二进制数(整数部分)

2024-06-02 09:12

本文主要是介绍用贪心算法计算十进制数转二进制数(整数部分),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

十进制整数转二进制数用什么方法?网上一搜,大部分答案都是用短除法,也就是除2反向取余法。这种方法是最基本最常用的,但是计算步骤多,还容易出错,那么还有没有其他更好的方法吗?

一、短除反向取余法

具体的步骤是不断将十进制数除以2,每次记录余数,直至商为0,然后把所有余数从下向上(反向)的顺序排列,即得到二进制数。

例如,把十进制数69转换为二进制数,结果为1000101,计算过程如图1所示。

图1 短除反向取余法

通过观察图1,可以看出:

69=1\times 2^{6}+0\times 2^{5}+0\times 2^{4}+0\times 2^{3}+1\times 2^{2}+0\times 2^{1}+1\times 2^{0}             (1)

一般表达式为:

a=\sum_{i=0}^{i=n}\left ( c_{i}\ast 2^{i} \right )c_{i}\in \left \{ 0,1 \right \}                                                (2)

十进制数转化为二进制数的结果就是把系数c_{i}i=ni=0(从最高位到最低位)的排列

如果把(1)式中的系数c_{_i}=0的项去掉,那么有

69=2^{6}+2^{2}+2^{0}                                                            (3)

也就是把十进制数转换为二进制的过程,实际上就是把十进制数转换为若干个以2为底的幂运算之和,那么一般表达式为:

a=\sum_{i=0}^{i=m}2^{n_{i}}                                                               (4)

在(3)式中,n_{0}=6n_{1}=2n_{2}=0

也就是在十进制的69转换为二进制后,数位序号为0,2,6的项系数为1,其他项系数都为0(数位序号从右向左依次增1,最低位序号为0),如表1所示,表格中橙色项系数为1,白色项系数为0。

表1 十进制数69的二进制转换结果

二进制数

1

0

0

0

1

0

1

位序号

6

5

4

3

2

1

0

位权重

64

32

16

8

4

21

二、贪心算法

那么如何快速求n_{i}呢?本人经过研究发现,利用贪心算法的思维,可以很好的解决这个问题。

1、贪心算法简介

贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的是在某种意义上的局部最优解。

2、操作步骤

假设十进制数为a,根据公式(4),用贪心算法思维进行十进制转二进制计算的步骤为:

(1)先找出a中最大的那一项2^{n_{i}},并记录{n_{i}}

(2)把最大项的值从a中减掉:a=a-2^{n_{i}}

(3)跳转到步骤(1)循环计算,直到a=0,计算结束。

例如,十进制数a=69,计算过程为:

(1)找出69中最大的项为64,也就是2^{6},记录n_{0}=6

(2)a=69-64=5

(3)找出5中最大的项为4,也就是2^{2},记录n_{1}=2

(4)a=5-4=1

(5)找出1中最大的项为1,也就是2^{0},记录n_{2}=0

(6)a=1-1=0,计算结束;

计算的结果为:69=2^{6}+2^{2}+2^{0}=64+4+1

二进制数位序号0,2,6的项为1,其他位序号的项为0,得到结果为1000101。

对比短除法和贪心法,可以发现,贪心算法计算步骤少,准确率也较高,不容易算错,但是需要我们事先记住一些常用的2^{n}的值,这样才有助于我们更快找出最大项。表2为0\leqslant n\leqslant 102^{n}的值。

表2 常用2为底幂的值

2^{n}2^{0}2^{1}2^{2}2^{3}2^{4}2^{5}2^{6}2^{7}2^{8}2^{9}2^{10}
12481632641282565121024

(本文结束)

这篇关于用贪心算法计算十进制数转二进制数(整数部分)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1023546

相关文章

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

在Linux终端中统计非二进制文件行数的实现方法

《在Linux终端中统计非二进制文件行数的实现方法》在Linux系统中,有时需要统计非二进制文件(如CSV、TXT文件)的行数,而不希望手动打开文件进行查看,例如,在处理大型日志文件、数据文件时,了解... 目录在linux终端中统计非二进制文件的行数技术背景实现步骤1. 使用wc命令2. 使用grep命令

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Java计算经纬度距离的示例代码

《Java计算经纬度距离的示例代码》在Java中计算两个经纬度之间的距离,可以使用多种方法(代码示例均返回米为单位),文中整理了常用的5种方法,感兴趣的小伙伴可以了解一下... 目录1. Haversine公式(中等精度,推荐通用场景)2. 球面余弦定理(简单但精度较低)3. Vincenty公式(高精度,

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

C语言中的常见进制转换详解(从二进制到十六进制)

《C语言中的常见进制转换详解(从二进制到十六进制)》进制转换是计算机编程中的一个常见任务,特别是在处理低级别的数据操作时,C语言作为一门底层编程语言,在进制转换方面提供了灵活的操作方式,今天,我们将深... 目录1、进制基础2、C语言中的进制转换2.1 从十进制转换为其他进制十进制转二进制十进制转八进制十进

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

windows和Linux使用命令行计算文件的MD5值

《windows和Linux使用命令行计算文件的MD5值》在Windows和Linux系统中,您可以使用命令行(终端或命令提示符)来计算文件的MD5值,文章介绍了在Windows和Linux/macO... 目录在Windows上:在linux或MACOS上:总结在Windows上:可以使用certuti

一文详解如何在Python中从字符串中提取部分内容

《一文详解如何在Python中从字符串中提取部分内容》:本文主要介绍如何在Python中从字符串中提取部分内容的相关资料,包括使用正则表达式、Pyparsing库、AST(抽象语法树)、字符串操作... 目录前言解决方案方法一:使用正则表达式方法二:使用 Pyparsing方法三:使用 AST方法四:使用字

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各