用贪心算法计算十进制数转二进制数(小数部分)

2024-06-02 05:44

本文主要是介绍用贪心算法计算十进制数转二进制数(小数部分),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在上一篇博文用贪心算法计算十进制数转二进制数(整数部分)-CSDN博客中,小编介绍了用贪心算法进行十进制整数转化为二进制数的操作步骤,那么有朋友问我,那十进制小数转二进制,可以用贪心算法来计算吗?我研究了一下,发现也是可以用的,下边介绍一下操作步骤。

目录

一、乘2正向取整法

二、十进制小数转化为二进制小数的数学原理

三、贪心算法

1、贪心算法简介

2、操作步骤

3、结论


一、乘2正向取整法

在介绍贪心算法之前,还是先介绍一下常用的计算方法,就是“乘2取整”法。

这种方法就是把十进制的小数部分乘2,并记录得到的积的整数部分,把积的整数部分减掉,再把积的小数部分进行乘2,并记录得到的积的整数部分,依次乘2取整,直到乘2后得到的积为1,也就是整数部分为1,小数部分为0时,转化完成。转化完成后,从上往下(正向)依次把整数部分排列起来,就是转化后的二进制小数。

图1 乘2取整法

注意,并不是所有的十进制小数都能精确地转化为二进制小数。如果出现乘2后的积一直不为1的情况时,此十进制小数就不能精确转化为二进制小数,只能无限接近。

例如,十进制小数0.15就无法精确地转换为二进制,转化的结果为0.001001100110011……循环不尽,无法得到精确转化值。

二、十进制小数转化为二进制小数的数学原理

通过观察图1,可以看出:

0.6875=1\times 2^{-1}+0\times 2^{-2}+1\times 2^{-3}+1\times 2^{-4}                                       (1)

一般的表达式为:

   a=\sum_{i=1}^{i=n}\left ( c_{i}\ast 2^{-i} \right ),c_{i}\in \left \{ 0,1 \right \}                                                              (2)

十进制小数转化为二进制小数的过程就是把系数c_{i}i=1i=n(从最高位到最低位)的排列。   

在(1)式中,c_{1}=1,c_{2}=0,c_{3}=1,c_{4}=1,所以\left ( 0.6875 \right )_{10}=\left ( 0.1011 \right )_{2}

如果把(1)式中的系数 c_{_i}=0 的项去掉,那么有

0.6875=1\times 2^{-1}+1\times 2^{-3}+1\times 2^{-4}                                           (3)

也就是把十进制小数转换为二进制小数的过程,实际上就是把十进制小数转换为若干个以2为底的幂运算之和,那么一般表达式为:

a=\sum_{i=0}^{i=m}2^{-n_{i}}                                                                       (4)

在(3)式中,n_{0}=1,n_{1}=3,n_{2}=4。也就是在十进制小数0.6825转换为二进制小数后,数位序号为1,3,4的项系数为1,其他项系数都为0(数位序号从左向右依次增1,最低位序号为1),如表1所示,表格中橙色项系数为1,白色项系数为0。

表1 十进制小数0.6875的二进制转换结果
位序号1234
位权重1/21/41/81/16
项系数1011
二进制数1011

三、贪心算法

那么如何快速计算出(4)式的n_{i}呢?与十进制整数转化二进制数类似,也可以用贪心算法进行计算。

1、贪心算法简介

贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的是在某种意义上的局部最优解。

2、操作步骤

假设十进制数为a,根据公式(4),用贪心算法思维进行十进制小数转二进制小数计算的步骤为:

(1)先找出a中最大的那一项2^{-n_{i}},并记录n_{i}

(2)把最大项的值从​​​​​​​a中减掉:a=a-2^{-n_{i}}

(3)跳转到步骤(1)循环计算,直到​​​​​​​a=0a\leqslant给定极小值,计算结束。

为了人工计算更直观,我们通常把2^{-n_{i}}写为小数形式0.5,0.25,0.125,0.0625,0.03125

因此(1)式右边的指数形式转化为小数形式

0.6825=1\times 0.5+0\times 0.25+1\times0.125+1\times 0.0625                              (5)

同样,可以把(3)式改写为:

0.6825=1\times 0.5+1\times0.125+1\times 0.0625                                        (6)

下边以十进制小数a=0.6875转化为二进制小数为例,介绍贪心算法的计算步骤:

(1)找出0.6875中最大的项为0.5,也就是2^{-1},记录n_{0}=1

(2)a=0.6875-0.5=0.1875

(3)找出0.1875中最大的项为0.125,也就是2^{-3},记录n_{1}=3

(4)a=0.1875-0.125=0.0625

(5)找出0.0625中最大的项为0.0625,也就是2^{-4},记录n_{1}=4

(6)a=0.0625-0.0625=0,计算结束;

计算的结果为:0.6875=0.5+0.125+0.0625=2^{-1}+2^{-3}+2^{-4}

二进制小数位序号为1,3,4的项为1,其他位序号的项为0,计算结果为\left ( 0.6875 \right )_{10}=\left ( 0.1011 \right )_{2}

3、结论

对比乘2取整法和贪心法,可以发现,对于可以转化为精确二进制小数的情况来说,贪心算法计算量少,准确率较高,不容易算错,也更直观,更好理解和记忆,但是需要我们事先记住一些常用的2^{-n}的值,这样才有助于我们更快找出最大项。表2为1\leqslant n\leqslant 52^{-n}的值。

表2 常用2为底幂的值

2^{-n}2^{-1}2^{-2}2^{-3}2^{-4}2^{-5}
0.50.250.1250.06250.03125

(本文结束)

这篇关于用贪心算法计算十进制数转二进制数(小数部分)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1023144

相关文章

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

在Linux终端中统计非二进制文件行数的实现方法

《在Linux终端中统计非二进制文件行数的实现方法》在Linux系统中,有时需要统计非二进制文件(如CSV、TXT文件)的行数,而不希望手动打开文件进行查看,例如,在处理大型日志文件、数据文件时,了解... 目录在linux终端中统计非二进制文件的行数技术背景实现步骤1. 使用wc命令2. 使用grep命令

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Java计算经纬度距离的示例代码

《Java计算经纬度距离的示例代码》在Java中计算两个经纬度之间的距离,可以使用多种方法(代码示例均返回米为单位),文中整理了常用的5种方法,感兴趣的小伙伴可以了解一下... 目录1. Haversine公式(中等精度,推荐通用场景)2. 球面余弦定理(简单但精度较低)3. Vincenty公式(高精度,

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

C语言中的常见进制转换详解(从二进制到十六进制)

《C语言中的常见进制转换详解(从二进制到十六进制)》进制转换是计算机编程中的一个常见任务,特别是在处理低级别的数据操作时,C语言作为一门底层编程语言,在进制转换方面提供了灵活的操作方式,今天,我们将深... 目录1、进制基础2、C语言中的进制转换2.1 从十进制转换为其他进制十进制转二进制十进制转八进制十进

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

windows和Linux使用命令行计算文件的MD5值

《windows和Linux使用命令行计算文件的MD5值》在Windows和Linux系统中,您可以使用命令行(终端或命令提示符)来计算文件的MD5值,文章介绍了在Windows和Linux/macO... 目录在Windows上:在linux或MACOS上:总结在Windows上:可以使用certuti

一文详解如何在Python中从字符串中提取部分内容

《一文详解如何在Python中从字符串中提取部分内容》:本文主要介绍如何在Python中从字符串中提取部分内容的相关资料,包括使用正则表达式、Pyparsing库、AST(抽象语法树)、字符串操作... 目录前言解决方案方法一:使用正则表达式方法二:使用 Pyparsing方法三:使用 AST方法四:使用字

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各