《搜索和推荐中的深度匹配》——2.4 推荐中的潜在空间模型

2024-06-02 04:18

本文主要是介绍《搜索和推荐中的深度匹配》——2.4 推荐中的潜在空间模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

重磅推荐专栏: 《Transformers自然语言处理系列教程》
手把手带你深入实践Transformers,轻松构建属于自己的NLP智能应用!

接下来,我们简要介绍在潜在空间中执行匹配的代表性推荐方法,包括偏置矩阵分解 (BMF)【1】、Factored Item Similarity Model (FISM) 【2】和分解机 (FM)【3】。

参阅 《深度推荐模型——FM》

2.4.1 有偏矩阵分解

偏置矩阵分解 (BMF) 是一种用于预测用户评分的模型【1】,即将推荐形式化为回归任务。它是在 Netflix Challenge 期间开发的,由于其简单性和有效性而迅速流行起来。匹配模型可以表述为:
在这里插入图片描述
其中 b 0 、 b u 和 b i b_0、b_u 和 b_i b0bubi 是标量,表示评分中的总体偏差、用户偏差和项目偏差,而 p u 和 q i p_u 和 q_i puqi是表示用户和项目的潜在向量。这可以解释为仅使用用​​户和项目的 ID 作为它们的特征,并使用两个线性函数将 ID 投影到潜在空间中。设 u 为用户 u 的 one-hot ID 向量,i 为 item i 的 one-hot ID 向量,P 为用户投影矩阵,Q 为 item 投影矩阵。那么我们可以在方程(2.4)的映射框架下表达模型:
在这里插入图片描述
其中 [·, ·] 表示向量连接。
给定训练数据,学习模型参数 ( Θ = b 0 , b u , b i , P , Q ) (Θ = {b0,bu,bi,P,Q}) Θ=b0,bu,bi,P,Q)通过正则化优化逐点回归误差:
在这里插入图片描述
其中 D 表示所有观察到的评分, R u i R_{ui} Rui 表示 (u, i) 的评分,λ 是 L2 正则化系数。由于它是一个非凸优化问题,因此通常采用交替最小二乘法【4】或随机梯度下降法【5】,这不能保证找到全局最优解。

参阅《深入理解Spark ML:基于ALS矩阵分解的协同过滤算法与源码分析》

2.4.2 因子项相似度模型

Factored Item Similarity Model (FISM) 【2】采用基于项目的协同过滤假设,即用户会更喜欢与他们目前选择的项目相似的项目。为此,FISM 使用用户选择的项目来代表用户,并将组合项目投影到潜在空间中。 FISM 的模型公式为:
在这里插入图片描述
其中 D u + D_u^+ Du+表示用户 u 选择的项目, d u d_u du 表示此类项目的数量, d − α d^{−α} dα 表示跨用户的归一化。 q i q_i qi 是目标物品 i 的潜在向量, p j p_j pj 是用户 u 选择的历史物品 j 的潜在向量。FISM 将 p j T q j p^T_j q_j pjTqj 视为项目 i 和 j 之间的相似度,并聚合目标项目 i 和用户 u 的历史项目的相似度。

FISM 采用成对损失并从二元隐式反馈中学习模型。设 U 为所有用户,总成对损失由下式给出
在这里插入图片描述
这迫使正(观察到的)实例的分数大于负(未观察到的)实例的分数,边距为 1。另一种成对损失,贝叶斯个性化排名 (BPR)【6】损失也被广泛使用:
在这里插入图片描述
其中 σ(·) 表示 sigmoid 函数,它将分数的差异转换为介于 0 和 1 之间的概率值,因此损失具有概率解释。两种损失之间的主要区别在于,BPR 将正例和负例之间的差异强制尽可能大,而没有明确定义余量。这两个成对损失都可以看作是 AUC 指标的替代品,该指标衡量模型正确排序了多少对项目

2.4.3 分解机

Factorization Machine (FM) 【3】是作为推荐的通用模型而开发的。除了用户和物品之间的交互信息,FM还结合了用户和物品的边信息,例如用户资料(例如年龄、性别等)、物品属性(例如类别、标签等)和上下文(例如,时间、地点等)。 FM 的输入是一个特征向量 x = [x1, x2, … . . , xn] 可以包含用于表示匹配函数的任何特征,如上所述。因此,FM 将匹配问题视为监督学习问题。它将特征投影到潜在空间中,对它们与内积的相互作用进行建模:
在这里插入图片描述
其中 b 0 b_0 b0 是偏差, b i b_i bi 是特征 x i x_i xi 的权重, v i v_i vi 是特征 x i x_i xi 的潜在向量。鉴于输入向量 x 可能很大但很稀疏,例如分类特征的多热编码,FM 仅捕获非零特征之间的交互(使用项 x i x j x_ix_j xixj)。

FM 是一个非常通用的模型,因为将不同的输入特征输入模型将导致模型的不同公式。例如,当x只保留用户ID和目标物品ID时,FM就变成了BMF模型;当 x 只保留用户历史选择项目的 ID 和目标项目 ID 时,FM 成为 FISM 模型。其他流行的潜在空间模型,例如 SVD++【7】和因子化个性化马尔可夫链(FPMC)【8】也可以通过适当的特征工程归入 FM。

引文

【1】Koren, Y., R. Bell, and C. Volinsky (2009). “Matrix factorization tech- niques for recommender systems”. Computer. 42(8): 30–37.
【2】Kabbur, S., X. Ning, and G. Karypis (2013). “FISM: Factored item similarity models for top-N recommender systems”. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’13. Chicago, IL, USA: ACM. 659–667.
【3】Rendle, S. (2010). “Factorization machines”. In: Proceedings of the
2010 IEEE International Conference on Data Mining. ICDM ’10.
Washington, DC, USA: IEEE Computer Society. 995–1000.
【4】He, X., H. Zhang, M.-Y. Kan, and T.-S. Chua (2016b). “Fast matrix factorization for online recommendation with implicit feedback”. In: Proceedings of the 39th International ACM SIGIR Conference
on Research and Development in Information Retrieval. SIGIR ’16.
Pisa, Italy: ACM. 549–558.
【5】Koren, Y., R. Bell, and C. Volinsky (2009). “Matrix factorization tech- niques for recommender systems”. Computer. 42(8): 30–37.
【6】Rendle, S., C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme
(2009). “BPR: Bayesian personalized ranking from implicit feedback”. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence. UAI ’09. Montreal, Quebec, Canada: AUAI Press. 452–461. url: http://dl.acm.org/citation.cfm?id=1795114.1 795167.
【7】Koren, Y. (2008). “Factorization meets the neighborhood: A multi- faceted collaborative filtering model”. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’08. Las Vegas, NV, USA: ACM. 426–434.
【8】Rendle, S., C. Freudenthaler, and L. Schmidt-Thieme (2010). “Factoriz- ing personalized Markov chains for next-basket recommendation”. In: Proceedings of the 19th International Conference on World Wide
Web. WWW ’10. Raleigh, NC, USA: ACM. 811–820.

这篇关于《搜索和推荐中的深度匹配》——2.4 推荐中的潜在空间模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1023009

相关文章

HTML5 搜索框Search Box详解

《HTML5搜索框SearchBox详解》HTML5的搜索框是一个强大的工具,能够有效提升用户体验,通过结合自动补全功能和适当的样式,可以创建出既美观又实用的搜索界面,这篇文章给大家介绍HTML5... html5 搜索框(Search Box)详解搜索框是一个用于输入查询内容的控件,通常用于网站或应用程

Java SWT库详解与安装指南(最新推荐)

《JavaSWT库详解与安装指南(最新推荐)》:本文主要介绍JavaSWT库详解与安装指南,在本章中,我们介绍了如何下载、安装SWTJAR包,并详述了在Eclipse以及命令行环境中配置Java... 目录1. Java SWT类库概述2. SWT与AWT和Swing的区别2.1 历史背景与设计理念2.1.

Java日期类详解(最新推荐)

《Java日期类详解(最新推荐)》早期版本主要使用java.util.Date、java.util.Calendar等类,Java8及以后引入了新的日期和时间API(JSR310),包含在ja... 目录旧的日期时间API新的日期时间 API(Java 8+)获取时间戳时间计算与其他日期时间类型的转换Dur

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

MySQL启动报错:InnoDB表空间丢失问题及解决方法

《MySQL启动报错:InnoDB表空间丢失问题及解决方法》在启动MySQL时,遇到了InnoDB:Tablespace5975wasnotfound,该错误表明MySQL在启动过程中无法找到指定的s... 目录mysql 启动报错:InnoDB 表空间丢失问题及解决方法错误分析解决方案1. 启用 inno

MySQL 存储引擎 MyISAM详解(最新推荐)

《MySQL存储引擎MyISAM详解(最新推荐)》使用MyISAM存储引擎的表占用空间很小,但是由于使用表级锁定,所以限制了读/写操作的性能,通常用于中小型的Web应用和数据仓库配置中的只读或主要... 目录mysql 5.5 之前默认的存储引擎️‍一、MyISAM 存储引擎的特性️‍二、MyISAM 的主

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

在Java中基于Geotools对PostGIS数据库的空间查询实践教程

《在Java中基于Geotools对PostGIS数据库的空间查询实践教程》本文将深入探讨这一实践,从连接配置到复杂空间查询操作,包括点查询、区域范围查询以及空间关系判断等,全方位展示如何在Java环... 目录前言一、相关技术背景介绍1、评价对象AOI2、数据处理流程二、对AOI空间范围查询实践1、空间查

MySQL表空间结构详解表空间到段页操作

《MySQL表空间结构详解表空间到段页操作》在MySQL架构和存储引擎专题中介绍了使用不同存储引擎创建表时生成的表空间数据文件,在本章节主要介绍使用InnoDB存储引擎创建表时生成的表空间数据文件,对... 目录️‍一、什么是表空间结构1.1 表空间与表空间文件的关系是什么?️‍二、用户数据在表空间中是怎么