SQL语句调优对比——大大增快查询速度

2024-06-02 03:32

本文主要是介绍SQL语句调优对比——大大增快查询速度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在实际应用中,经常遇到查询数据库语句,特别是查询历史数据的时候,数据量非常之大。此次遇到个百万级的数据量,查询历史数据中的一段时间内的数据并且以曲线的方式显示出来,非常之慢,有时候还会卡住应用程序,所以做了如下测试。
得出的结论就是,“创建索引,优化语句”。优化语句有如下一些常用点可以参考(后附测试结果):

  1. 应尽量避免在 where子句中使用!=<>操作符,否则将引擎放弃使用索引而进行全表扫描。

  2. 任何地方都不要使用 select * from t,用具体的字段列表代替“*”,不要返回用不到的任何字段。

  3. 对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。

  4. 应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:
    select id from t where num is null
    可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:
    select id from t where num=0

  5. 尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:
    select id from t where num=10 or num=20
    可以这样查询:
    select id from t where num=10
    union all
    select id from t where num=20

  6. 下面的查询也将导致全表扫描:(不能前置百分号)
    select id from t where name like ‘%c%’
    若要提高效率,可以考虑全文检索。

  7. in 和 not in 也要慎用,否则会导致全表扫描,如:
    select id from t where num in(1,2,3)
    对于连续的数值,能用 between 就不要用 in 了:
    select id from t where num between 1 and 3

  8. 如果在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然 而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:
    select id from t where num=@num
    可以改为强制查询使用索引:
    select id from t with(index(索引名)) where num=@num

  9. 应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:
    select id from t where num/2=100
    应改为:
    select id from t where num=100*2

  10. 应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:
    select id from t where substring(name,1,3)=’abc’–name以abc开头的id
    select id from t where datediff(day,createdate,’2005-11-30′)=0–’2005-11-30′生成的id

    应改为:
    select id from t where name like ‘abc%’
    select id from t where createdate>=’2005-11-30′ and createdate<’2005-12-1′

  11. 不要在where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。

  12. 并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段 sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。

  13. 尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会 逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。

  14. 尽可能的使用varchar/nvarchar 代替 char/nchar,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。

以下是测试结果对比,有图有真相,图更更好的反映结果。

  1. 原始语句与结果

    SELECT * FROM history_balance_data WHERE Update_Time >='2018-5-30 13:48:05' AND Update_Time <='2018-5-30 13:54:56'

    这里写图片描述

  2. >=<= 改为between and, 并且去掉*,直接选择需要查询的列(该表有50列,*会查询所有列),需要查询的列仅有17行

    SELECT Update_Time,Balance_press1,Balance_press2,Balance_press3,Balance_press4,Balance_press5,Balance_press6,Balance_press7,Balance_press8,Balance_press9,Balance_press10,Balance_press11,Balance_press12,Balance_press13,Balance_press14,Balance_press15,Balance_press16
    FROM history_balance_data WHERE Update_Time BETWEEN '2018-5-30 13:48:05' AND '2018-5-30 13:54:56';

    这里写图片描述
    可以看到速度有所提升。

  3. 建立索引

    mysql> create index time on history_balance_data(Update_time);
    //%普通索引,由于时间列有重复值,所以不能创建唯一索引UNIQUE
    //mysql> create UNIQUE index time on history_balance_data(Update_time);%唯一索引,不重复,列值唯一,但是唯一索引可以有空值。

    创建好的索引
    这里写图片描述
    再次使用刚才1中的语句

    SELECT * FROM history_balance_data WHERE Update_Time >='2018-5-30 13:48:05' AND Update_Time <='2018-5-30 13:54:56'

    这里写图片描述
    创建索引之后,速度大大提升,用时直接降了一个小数点级,所以要提升查询速度,在要查询的条件上创建索引是非常必要的
    注意:索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有 必要。

  4. 再来看对语句优化后的结果

    (1) 改>=<=between and

    SELECT * FROM history_balance_data WHERE Update_Time BETWEEN '2018-5-30 13:48:05' AND '2018-5-30 13:54:56'

    这里写图片描述

    (2)改*为具体列

    SELECT Update_Time,ID,Balance_press1,Balance_press2,Balance_press3,Balance_press4,Balance_press5,Balance_press6,Balance_press7,Balance_press8,Balance_press9,Balance_press10,Balance_press11,Balance_press12,Balance_press13,Balance_press14,Balance_press15,Balance_press16,
    Balance_press_Max1,Balance_press_Max2,Balance_press_Max3,Balance_press_Max4,Balance_press_Max5,Balance_press_Max6,Balance_press_Max7,Balance_press_Max8,Balance_press_Max9,Balance_press_Max10,Balance_press_Max11,Balance_press_Max12,Balance_press_Max13,Balance_press_Max14,Balance_press_Max15,Balance_press_Max16,
    Balance_press_Min1,Balance_press_Min2,Balance_press_Min3,Balance_press_Min4,Balance_press_Min5,Balance_press_Min6,Balance_press_Min7,Balance_press_Min8,Balance_press_Min9,Balance_press_Min10,Balance_press_Min11,Balance_press_Min12,Balance_press_Min13,Balance_press_Min14,Balance_press_Min15,Balance_press_Min16
    FROM history_balance_data WHERE Update_Time >='2018-5-30 13:48:05' AND Update_Time <='2018-5-30 13:54:56'

    这里写图片描述
    对比between and
    这里写图片描述
    (3)减少列
    这里写图片描述
    对比between and
    这里写图片描述
    至此,达到目前最优化的结果

这篇关于SQL语句调优对比——大大增快查询速度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1022906

相关文章

MySQL数据库约束深入详解

《MySQL数据库约束深入详解》:本文主要介绍MySQL数据库约束,在MySQL数据库中,约束是用来限制进入表中的数据类型的一种技术,通过使用约束,可以确保数据的准确性、完整性和可靠性,需要的朋友... 目录一、数据库约束的概念二、约束类型三、NOT NULL 非空约束四、DEFAULT 默认值约束五、UN

MySQL 多表连接操作方法(INNER JOIN、LEFT JOIN、RIGHT JOIN、FULL OUTER JOIN)

《MySQL多表连接操作方法(INNERJOIN、LEFTJOIN、RIGHTJOIN、FULLOUTERJOIN)》多表连接是一种将两个或多个表中的数据组合在一起的SQL操作,通过连接,... 目录一、 什么是多表连接?二、 mysql 支持的连接类型三、 多表连接的语法四、实战示例 数据准备五、连接的性

MySQL中的分组和多表连接详解

《MySQL中的分组和多表连接详解》:本文主要介绍MySQL中的分组和多表连接的相关操作,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录mysql中的分组和多表连接一、MySQL的分组(group javascriptby )二、多表连接(表连接会产生大量的数据垃圾)MySQL中的

MyBatis模糊查询报错:ParserException: not supported.pos 问题解决

《MyBatis模糊查询报错:ParserException:notsupported.pos问题解决》本文主要介绍了MyBatis模糊查询报错:ParserException:notsuppo... 目录问题描述问题根源错误SQL解析逻辑深层原因分析三种解决方案方案一:使用CONCAT函数(推荐)方案二:

MySQL 中的 JSON 查询案例详解

《MySQL中的JSON查询案例详解》:本文主要介绍MySQL的JSON查询的相关知识,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql 的 jsON 路径格式基本结构路径组件详解特殊语法元素实际示例简单路径复杂路径简写操作符注意MySQL 的 J

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

Windows 上如果忘记了 MySQL 密码 重置密码的两种方法

《Windows上如果忘记了MySQL密码重置密码的两种方法》:本文主要介绍Windows上如果忘记了MySQL密码重置密码的两种方法,本文通过两种方法结合实例代码给大家介绍的非常详细,感... 目录方法 1:以跳过权限验证模式启动 mysql 并重置密码方法 2:使用 my.ini 文件的临时配置在 Wi

MySQL重复数据处理的七种高效方法

《MySQL重复数据处理的七种高效方法》你是不是也曾遇到过这样的烦恼:明明系统测试时一切正常,上线后却频频出现重复数据,大批量导数据时,总有那么几条不听话的记录导致整个事务莫名回滚,今天,我就跟大家分... 目录1. 重复数据插入问题分析1.1 问题本质1.2 常见场景图2. 基础解决方案:使用异常捕获3.

SQL中redo log 刷⼊磁盘的常见方法

《SQL中redolog刷⼊磁盘的常见方法》本文主要介绍了SQL中redolog刷⼊磁盘的常见方法,将redolog刷入磁盘的方法确保了数据的持久性和一致性,下面就来具体介绍一下,感兴趣的可以了解... 目录Redo Log 刷入磁盘的方法Redo Log 刷入磁盘的过程代码示例(伪代码)在数据库系统中,r

mysql中的group by高级用法

《mysql中的groupby高级用法》MySQL中的GROUPBY是数据聚合分析的核心功能,主要用于将结果集按指定列分组,并结合聚合函数进行统计计算,下面给大家介绍mysql中的groupby用法... 目录一、基本语法与核心功能二、基础用法示例1. 单列分组统计2. 多列组合分组3. 与WHERE结合使