pytorch-Normalization

2024-06-01 18:04
文章标签 pytorch normalization

本文主要是介绍pytorch-Normalization,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 1. 为什么Normalization
  • 2. Normalization
    • 2.1 image Normalization
    • 2.2 Batch Normalization
  • 3. Normalization pytorch实现
    • 3.1 Normalization标准公式
    • 3.2 2d normalization
    • 3.3 normalize test
  • 4. 使用normalization的好处

1. 为什么Normalization

下图使用sigmoid激活函数,该激活函数在超出一定范围的时候,梯度就变成了0,会出现梯度弥散的现象,因此不推荐使用sigmoid,但是某些情况下又不得不使用。
normalization是将输入转换为以0为均值以σ为方差的范围内,使得输入变成在0附近以很小的幅度变化,方便下一层进行优化。
在这里插入图片描述
在看下一幅图,其中前半部分x1和x2的值范围相差较大,在计算loss的时候,找到最优解会曲折一些,而后半部分x1和x2的值的范围相差不大,在计算loss的时候,找到最优解就会比较直接,更快一些。
因此使用normalization将输入转换的一个区间,有助于loss尽快找到最优解。
在这里插入图片描述

2. Normalization

2.1 image Normalization

在这里插入图片描述

2.2 Batch Normalization

Normalization有下图几种,这里只说Batch Normalization
假设H和W都说28,有3个通道和6个batch,那么就分别计算当前batch每个channel的均值和方差(channel0~channel2),最后输出结果是消掉batch和feature,有几个通道就有几个均值和方差,
在这里插入图片描述
下图中第一个公式使用当前batch的feature- mean/var 使得值变成[0,1]
第二个公式在第一个公式的基础上增加了一个γ倍数和偏置β,使得数据变为[β,γ]之间。
μ和σ是当前batch统计出来,不需要梯度,而β,γ是计算出来的是需要梯度信息的,在训练时还有一个running-μ和running-σ是历史统计,即之前所有batch的统计。
在这里插入图片描述

3. Normalization pytorch实现

3.1 Normalization标准公式

在这里插入图片描述

3.2 2d normalization

下图中的layer.weight就是γ,bias就是β
BatchNorm2d的参数必须与输入channel数一致,否则会报错。
在这里插入图片描述
打印normalize layer,信息可以看到running-μ和running-σ以及β,γ
affine参数决定了β,γ是否需要更新
加粗样式

3.3 normalize test

Normalization layer和drop out layer类似,train和test的行为是不一样的
具体表现为:

  • test可能就一个sample 所以是无法统计μ和σ的
  • μ和σ=running-μ和running-σ
  • test 没有back forward,因此β,γ是不需要更新的
    切换test模式使用layer.eval()函数
    在这里插入图片描述

4. 使用normalization的好处

  • 收敛更快
  • 更好获得最优解
  • 更稳定。在使用大leaning rate的时候震荡不会那么明感

这篇关于pytorch-Normalization的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1021724

相关文章

Pytorch介绍与安装过程

《Pytorch介绍与安装过程》PyTorch因其直观的设计、卓越的灵活性以及强大的动态计算图功能,迅速在学术界和工业界获得了广泛认可,成为当前深度学习研究和开发的主流工具之一,本文给大家介绍Pyto... 目录1、Pytorch介绍1.1、核心理念1.2、核心组件与功能1.3、适用场景与优势总结1.4、优

conda安装GPU版pytorch默认却是cpu版本

《conda安装GPU版pytorch默认却是cpu版本》本文主要介绍了遇到Conda安装PyTorchGPU版本却默认安装CPU的问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目录一、问题描述二、网上解决方案罗列【此节为反面方案罗列!!!】三、发现的根本原因[独家]3.1 p

PyTorch中cdist和sum函数使用示例详解

《PyTorch中cdist和sum函数使用示例详解》torch.cdist是PyTorch中用于计算**两个张量之间的成对距离(pairwisedistance)**的函数,常用于点云处理、图神经网... 目录基本语法输出示例1. 简单的 2D 欧几里得距离2. 批量形式(3D Tensor)3. 使用不

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

pytorch自动求梯度autograd的实现

《pytorch自动求梯度autograd的实现》autograd是一个自动微分引擎,它可以自动计算张量的梯度,本文主要介绍了pytorch自动求梯度autograd的实现,具有一定的参考价值,感兴趣... autograd是pytorch构建神经网络的核心。在 PyTorch 中,结合以下代码例子,当你

在PyCharm中安装PyTorch、torchvision和OpenCV详解

《在PyCharm中安装PyTorch、torchvision和OpenCV详解》:本文主要介绍在PyCharm中安装PyTorch、torchvision和OpenCV方式,具有很好的参考价值,... 目录PyCharm安装PyTorch、torchvision和OpenCV安装python安装PyTor

pytorch之torch.flatten()和torch.nn.Flatten()的用法

《pytorch之torch.flatten()和torch.nn.Flatten()的用法》:本文主要介绍pytorch之torch.flatten()和torch.nn.Flatten()的用... 目录torch.flatten()和torch.nn.Flatten()的用法下面举例说明总结torch

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的

Pytorch微调BERT实现命名实体识别

《Pytorch微调BERT实现命名实体识别》命名实体识别(NER)是自然语言处理(NLP)中的一项关键任务,它涉及识别和分类文本中的关键实体,BERT是一种强大的语言表示模型,在各种NLP任务中显著... 目录环境准备加载预训练BERT模型准备数据集标记与对齐微调 BERT最后总结环境准备在继续之前,确