数据结构与算法笔记:基础篇 - 栈:如何实现浏览器的前进和后退功能?

本文主要是介绍数据结构与算法笔记:基础篇 - 栈:如何实现浏览器的前进和后退功能?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

概述

浏览器的前进、后退功能,你肯定很熟悉吧?

当依次访问完一串页面 a-b-c 之后,点击浏览器的后退按钮,就可以查看之前浏览过的页面 ba。当后退到页面 a,点击前进按钮,就可以重新查看页面 bc。但是,如果你后退到页面 b 后,点击新的页面 d,那就无法再通过前进、后退功能查看页面 c 了。

假设你是浏览器的开发工程师,你会如何实现这个功能呢?

这就要用到本章讲的 “栈” 这种数据结构了。


如何理解 “栈”?

关于 “栈”,有一个非常贴切的例子,就是一摞叠在一起的盘子。我们平时放盘子时,都是从下往上一个一个的放;取的时候,也是从上往下一个一个地依次取,不能从中间任意抽出。后进者先出,先进者后出,这就是典型的 “栈” 结构

从栈的操作特性上来看,栈是一种 “操作受限” 的线性表,只允许在一端插入和删除数据。

第一次接触这种数据类型时,我对它存在的意义产生了很大的疑惑。因为我觉得,相比数组和链表,栈给我的只有限制,并没有任何优势。那我直接使用数组或链表不就好了吗?为什么还要用这个 “操作受限” 的 “栈” 呢?

事实上,从功能上来说,数组或链表确实可以替代栈,但你要知道,特定的数据结构是对特定场景的抽象,而且,数组或链表暴露了太多的接口,操作上的确灵活,但使用时就比较不可控,自然也就容易出错。

当某个数据集合只涉及在一端插入和删除数据,并且满足后进先出、先进后出的特性,这是应该首选 “栈” 这种数据结构

如何实现一个 “栈”?

从刚才栈的定义里,我们可以看出,栈主要包含两个操作,入栈和出栈,也就是在栈顶插入一个数据和从栈顶删除一个数据。理解了栈的定义后,我们来看下如何用代码实现一个栈。

实际上,栈既可以用数组来实现,也可以用链表来实现。

  • 用数组实现的栈,我们叫做顺序栈
  • 用链表实现的栈,我们叫做链式栈

这里实现一个基于数组的顺序栈。

这段代码使用 Java 来实现,但不涉及任何高级语法,并且用了中文做了详细的注释。

public class ArrayStack {private String[] items; // 数组private int count; // 栈中元素个数private int n; // 栈大小public ArrayStack(int n) {this.items = new String[n];this.count = 0;this.n = n;}// 入栈操作public boolean push(String item) {if (count == n) {// 数组空间不够了,直接返回false,入栈失败return false;}items[count] = item;count++;return true;}// 出栈操作public String pop() {if (count == 0) {// 栈为空,直接返回nullreturn null;}// 返回下标为count-1的数组元素,并且栈中元素个数减1String temp = items[count - 1];count--;return temp;}
}

了解了定义和基本操作,那它的操作时间、框架复杂度时多少呢?

不管是顺序栈还是链式栈,存储数据只需要一个大小为 n 的数组就够了。在入栈和出栈的过程中,只需要一两个临时变量存储空间,所以空间复杂度时 O ( 1 ) O(1) O(1)

注意,这里存储数据需要一个大小为 n 的数组,并不是说空间复杂度就是 O ( n ) O(n) O(n)。因为,这 n 个空间是必须的,无法省掉。所以我们说空间复杂度的时候,是除了原本的数据存储空间外,算法运行还需要额外的存储空间。

框架复杂度分析是不是很简单?时间复杂度也不难。不管是顺序栈还是链式栈,入栈、出栈只涉及栈顶个人数据的操作,所以时间复杂度都是 O ( 1 ) O(1) O(1)

支持动态扩容的顺序栈

刚才那个基于数组实现的栈,是一个固定大小的栈,也就是说,在初始化栈时需要实现制定栈的大小。当栈满之后,就无法再往栈里添加数据了。尽管链式栈的大小不受限,但要存储 next 指针,内存消耗相对较多。那我们如何基于数组实现一个可以支持动态扩容的栈呢?

还记得在数组那篇文章,是如何来支持一个支持动态扩容的数组吗?当数组空间不够时,我们就重新申请一块更大的内存,将原来数组中的数据统统拷贝过去。这样就实现了一个支持动态扩容的数组。

所以,如果要实现一个支持动态扩容的栈,我们只需要底层依赖一个支持动态扩容的数组就可以了。当栈满了之后,我们就申请一个更大的数组,将原来的数据搬移到新数组中。

在这里插入图片描述
实际上,支持动态扩容的顺序栈,我们平时开发中并不常用到。讲这个的目的,主要还是希望带你练习一下前面将的复杂度分析方法。

你不用死记硬背入栈、出栈的时间复杂度,你需要掌握的是分析方法。能够自己分析才算是真正掌握了。现在就带你一起分析一下支持动态扩容的顺序栈的入栈、出栈的时间复杂度。

对于出栈操作来说,我们不会涉及内存的重新申请和数据搬移,所以出栈的时间复杂度还是 O ( 1 ) O(1) O(1)。但是对于入栈来说,当占用有空闲空间时,入栈操作的时间复杂度是 O ( 1 ) O(1) O(1)。但当空间不够时,就需要申请内存和数据搬移,所以时间复杂度编程了 O ( n ) O(n) O(n)

也就是说,对于入栈操作,最好情况时间复杂度是 O ( 1 ) O(1) O(1),最坏情况时间复杂度是 O ( n ) O(n) O(n)。那平均情况下的时间复杂度又是多少呢?还记得我们在复杂度那篇文章中讲的摊还分析法吗?这个入栈操作的平均时间复杂度可以用摊还分析法来分析。正好也借此再回顾一下摊还分析法。

为了分析的方便,我们需要预先做一些假设和定义:

  • 栈空间不够时,我们重新申请一个原来大小两倍的数组;
  • 为了简化分析,假设只有入栈操作没有出栈操作;
  • 定义不涉及内存搬移的入栈操作为 simple-push,时间复杂度为 O ( 1 ) O(1) O(1)

如果当前栈大小为 k,并且已满,当再有新的数据要入栈时,就需要重新申请 2 倍大小的内存,并且做 k 个数据的搬移操作,然后再入栈。

  • 我们将 k 个数据的搬移操作,均摊到前面 k 次的 simple-push 操作。
  • 均摊后,每个入栈只需要一次 simple-push 操作和 一次搬移操作。
  • 也就是说,均摊后,入栈操作的均摊时间复杂度就为 O ( 1 ) O(1) O(1)

在这里插入图片描述

通过这个例子的实战分析,也印制了前面讲的,均摊时间复杂度一般都等于最好情况时间复杂度。因为在大部分情况下,入栈的操作时间复杂度都是 O ( 1 ) O(1) O(1),只有在个别时刻才会退化为 O ( n ) O(n) O(n),所以把好是多的入栈操作均摊到其他入栈操作上,平均情况下的耗时就接近 O ( 1 ) O(1) O(1)

栈在函数调用中的应用

接下来在看栈的另一个常见的应用场景,编译器如何利用栈来实现表达式求值

为了方便解释,我们将算术表达式简化为只包含加减乘除四则运算,比如:34+13*9+44-12/3。对于这个四则运算,人脑可以很快求接触答案,但是对于计算机来说,理解这个表达式本身就是个挺难得事儿。如果换作你,让你来实现这样一个表达式求值的功能,你会怎么做?

实际上,编译器就是通过两个栈来实现的。其中一个是保存操作数的栈,另一个是保存运算符的栈。我们从左向右遍历表达式:

  • 当遇到数字,我们就直接压入操作数栈;
  • 当遇到运算符,就与运算符栈的栈顶元素进行比较。
    • 如果运算符 比 运算符栈顶元素的优先级高,就将当前的运算符压入栈;
    • 如果运算符 比 运算符栈顶元素的优先级低或者相同,从运算符中取栈顶运算符,从操作数栈的栈顶取 2 个操作数,然后进行计算,再把计算的记过压入操作数栈,继续比较。

我们将 3+5*8-6 这个表达式的计算过程画了一张图,你可以 结合图来理解上面的计算过程。
在这里插入图片描述

栈在括号匹配中的应用

除了用栈来实现表达式求值,还可以借助栈来检查表达式中的括号匹配。

假设表达式中只包含三种括号,圆括号 ()、花括号 {} 和方括号 [],并且它们可以任意嵌套。比如 {[]()[{}]}[{()}([])] 等都为合法格式,而 {[}()][({)] 问哦不合法格式。那我现在给你一个包含三种括号的表达式字符串,如何检查它们是否合法呢?

这里也可以使用栈来解决。用栈来保存未匹配的左括号,从左到右一次扫描字符串。当扫描到左括号时,将其压入栈中;当扫描到有括号时,从栈顶取出一个左括号。如果能够匹配,比如 () 匹配,[ 跟 ] 匹配,{} 匹配,则继续扫描剩下的字符串。如果扫描过程中,遇到不能匹配的右括号,或者栈中没有数据,则说明为非法格式。

当所有的括号都扫描完成之后,如果栈为空,则说明字符串为合法字符串;否则,说明有未匹配的左括号,为非法格式。

如何实现浏览器的前进、后退功能?

其实,用两个栈就可以完美解决。

我们使用两个栈,XY,我们把首次浏览的页面压入栈 X,当点击后退按钮时,再一次从栈 X 中出栈,并将出栈的数据依次放入栈 Y。当我们点击前进按钮时,依次从栈 Y 中取出数据,放入栈 X。当 X 中没有数据时,那就说明没有页面可以后退浏览了。当栈 Y 中没有数据,那就说明没有页面可以点击前进按钮浏览了。

比如,你顺序查看了 abc 三个页面,我们依次把 abc 压入栈 X,这个时候,两个栈的数据就是这个样子的。
在这里插入图片描述
当你通过后退按钮,从页面 c 退到页面 a 之后,我们就一次把 cb 从栈 X 中取出,并依次放入栈 Y。这个时候数据就是这样的。

在这里插入图片描述

这个时候,如果你又想看页面 b,于是你点击了前进按钮回到页面 b,我们就再把 b 从栈 Y 出栈,放入栈 X

在这里插入图片描述
这个时候,你通过页面 b 跳转到新的页面 d,页面 c 就无法再通过前进、后退按钮重复查看了,所以需要清空栈 Y

在这里插入图片描述

小结

栈是一种操作受限的数据结构,只支持入栈和出栈操作。后劲先出是它最大的特点。栈既可以通过数组实现,也可以通过链表来实现。不管基于数组还是链表,入栈、出栈的时间复杂度都为 O ( 1 ) O(1) O(1)。此外,还讲了一种支持动态扩容的顺序栈,你需要掌握其均摊时间复杂度的分析方法。

这篇关于数据结构与算法笔记:基础篇 - 栈:如何实现浏览器的前进和后退功能?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1019363

相关文章

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

苹果macOS 26 Tahoe主题功能大升级:可定制图标/高亮文本/文件夹颜色

《苹果macOS26Tahoe主题功能大升级:可定制图标/高亮文本/文件夹颜色》在整体系统设计方面,macOS26采用了全新的玻璃质感视觉风格,应用于Dock栏、应用图标以及桌面小部件等多个界面... 科技媒体 MACRumors 昨日(6 月 13 日)发布博文,报道称在 macOS 26 Tahoe 中

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

Nexus安装和启动的实现教程

《Nexus安装和启动的实现教程》:本文主要介绍Nexus安装和启动的实现教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Nexus下载二、Nexus安装和启动三、关闭Nexus总结一、Nexus下载官方下载链接:DownloadWindows系统根

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte