解锁 GPT-4o 背后数据带来的情绪价值

2024-05-31 21:52

本文主要是介绍解锁 GPT-4o 背后数据带来的情绪价值,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

GPT-4o 可以说已经是一个富有情感、通人性的智能语音助手,或者更准确地说,是一个越来越接近人类交互的 “新物种”。这个强大的模型同时具备文本、图片、视频和语音理解和合成方面的能力,甚至可以被视为 GPT-5 的一个未完成版。

图片

01 富有情感的实时语音交互

此前 ChatGPT 所展现的对话能力,是通过三个独立模型组成的管道实现的:一个模型将音频转录为文本,GPT-3.5 或 GPT-4 处理文本并输出文本,第三个模型将文本转换回音频。

而 GPT-4o 能够根据文本内容的情感调整语音的音调、语速和强调,从而更自然地表达喜怒哀乐等情感。提升语音的清晰度和自然度,减少机械感,使得生成的语音更接近真实人声。

图片

02 全面的多模态交互方式

GPT-4o 通过整合图像识别、视频场景识别和语音处理,成为了领先的多模态大模型。用户可以更加自然地与 ChatGPT 互动,享受即时反馈和动态参与的能力。GPT-4o 甚至能够识别语气的微妙变化,并以不同的情感风格生成回应,包括唱歌。

图片

03 GPT-4o 带来的情绪价值

ChatGPT-4o 能更好地理解用户的情绪和意图,它可以在对话中更准确地识别情绪信号,如语气和语言选择,并据此调整其回应,使交流更加自然和人性化。

ChatGPT-4o 能够根据对话历史和用户偏好进行个性化调整,更好地适应不同用户的情感需求。这种个性化不仅限于语言风格,还包括对用户情绪状态的敏感反应,能够提供更加贴心和有针对性的交互体验。

图片

04 目前的AI与Her的距离

  • 情感合成数据的匮乏

当前的 AI 主要通过分析语言和语音的模式来“理解”情感,如通过改变语调和语速来表达快乐或悲伤,但这些表达往往缺乏人类的微妙和复杂性,无法完全复制人类的情感丰富性和自然流畅性。

人类语音情感的真实性和适应性是通过多年的社会互动和经验积累形成的,AI 可以在给定的情境下表达预设的情感,但它们在适应新情境和动态调整情感表达方面仍有限。

  • 端到端多模态数据稀缺

GPT-4o 成为多模态大模型性能的先锋。目前训练多模态大模型的困难在于多模态数据的稀缺。多模态数据的收集与标注难度高、多样性和一致性难以保证,以及数据量需求大,构成了训练多模态大模型的主要挑战。

多模态数据涵盖文本、图像、音频、视频等,这些数据的收集和标注过程非常复杂且耗时,例如,视频数据需要逐帧标注画面中的物体、动作和背景环境,音频数据需要精细标注说话者的情感、语气和背景噪音等。

此外,各模态数据在内容和时间上需保持一致,确保其多样性和一致性尤其困难,特别是在跨文化和语言的数据收集中。多模态模型需要大量数据来学习不同模态之间的关系和交互,这不仅需要巨量的存储空间,还需强大的计算资源。

05 多情感数据集:语音/文本/图像/多模态

海天瑞声语音合成情感数据集达数百小时,涵盖中文、泰语、越南语等多语种。包含快乐、悲伤、愤怒、惊喜、仇恨、恐惧、中立等17种情绪,并覆盖干练白领、老年太后、阳光少年、功夫大叔等众多“人设”。可广泛应用于有声书、影视配音、数字人等领域,提升模型的情感表达能力。

海天瑞声语音识别情感数据集 广泛覆盖成人、儿童和老人等年龄段,并拥有美国西班牙语和墨西哥西班牙语等外语情感对话数据集。通过语音识别用户情绪,能够让模型更好的理解用户的情绪和状态,从而提供更人性化的交互体验。

海天瑞声多情感语料库包含平静、生气、高兴、难过、害怕等18种细粒度情感标签,总计超320,000句,8,700,000字。文本均按照设定的人物小传,符合人物特点的多情感数据。在客服、教育、娱乐等领域中,能够提升语言模型在情感识别和生成方面的能力,提供更加丰富和个性化的用户体验。

海天瑞声情感图像数据集,包含多种情绪,如开心、生气、伤心、惊讶、平静等。对面部表情识别,情绪分类和人脸检测等标注。采集环境复杂多样,采集对象覆盖5岁到70岁的多元化人群,总数超100,000段视频,500,000张图片。可用于人脸识别、人脸姿态、面部表情、目标检测、唇动训练等任务。

为了应对多模态数据稀缺的挑战,海天瑞声推出多模态数据集。数据集包含口播数字人、唇动数据集,广泛应用于数字人、虚拟主播、在线教育等场景。涵盖了视频、图像、音频和文本等多种数据类型,并经过高质量采集和精细标注,确保数据的准确性和一致性。

这篇关于解锁 GPT-4o 背后数据带来的情绪价值的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1019137

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

解决mysql插入数据锁等待超时报错:Lock wait timeout exceeded;try restarting transaction

《解决mysql插入数据锁等待超时报错:Lockwaittimeoutexceeded;tryrestartingtransaction》:本文主要介绍解决mysql插入数据锁等待超时报... 目录报错信息解决办法1、数据库中执行如下sql2、再到 INNODB_TRX 事务表中查看总结报错信息Lock

使用C#删除Excel表格中的重复行数据的代码详解

《使用C#删除Excel表格中的重复行数据的代码详解》重复行是指在Excel表格中完全相同的多行数据,删除这些重复行至关重要,因为它们不仅会干扰数据分析,还可能导致错误的决策和结论,所以本文给大家介绍... 目录简介使用工具C# 删除Excel工作表中的重复行语法工作原理实现代码C# 删除指定Excel单元