Tensorflow入门实战 P02-彩色图片分类

2024-05-31 15:12

本文主要是介绍Tensorflow入门实战 P02-彩色图片分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1、序言

2、主要代码

3、运行结果展示

(1)展示cifar10里面的20张图片

(2)预测的图片

(3)模型评估


  • 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊 | 接辅导、项目定制

1、序言

这篇博客,主要是讲的是彩色图片分类,数据集为:cifar10。

和以往的流程一样:

① 判断是否在GPU上运行

② 导入cifar10数据集

③ 归一化(将像素的值标准化至0-1的区间内)

④ 可视化数据集里的数据(展示了2行,共20张图片)

⑤ 搭建神经网络

⑥ 编译

⑦ 训练模型

⑧ 预测并显示预测的图片

⑨ 模型评估 

2、主要代码

import tensorflow as tf
from keras import datasets, layers, models
import matplotlib.pyplot as plt
import numpy as np
# 1、设置GPU
gpus = tf.config.list_physical_devices('GPU')if gpus:gpu0 = gpus[0]  # 如果有多个GPU,仅使用第0个GPUtf.config.experimental.set_memory_growth(gpu0,True)  # 设置GPU显存用量按需使用tf.config.set_visible_devices([gpu0], "GPU")# 2、导入数据
(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()# 3、归一化
# 将像素的值标准化至0到1的区间内。
train_images, test_images = train_images / 255.0, test_images / 255.0
print(train_images.shape,test_images.shape,train_labels.shape,test_labels.shape)
# (50000, 32, 32, 3)     (10000, 32, 32, 3)    (50000, 1)          (10000, 1)# 4、可视化
class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer','dog', 'frog', 'horse', 'ship', 'truck']plt.figure(figsize=(20,10))
for i in range(20):plt.subplot(5,10,i+1)plt.xticks([])plt.yticks([])plt.grid(False)plt.imshow(train_images[i], cmap=plt.cm.binary)plt.xlabel(class_names[train_labels[i][0]])
plt.show()# 二、搭建神经网络
model = models.Sequential([layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)),  # 卷积层1,卷积核3*3layers.MaxPooling2D((2, 2)),  # 池化层1,2*2采样layers.Conv2D(64, (3, 3), activation='relu'),  # 卷积层2,卷积核3*3layers.MaxPooling2D((2, 2)),  # 池化层2,2*2采样layers.Conv2D(64, (3, 3), activation='relu'),  # 卷积层3,卷积核3*3layers.Flatten(),  # Flatten层,连接卷积层与全连接层layers.Dense(64, activation='relu'),  # 全连接层,特征进一步提取layers.Dense(10)  # 输出层,输出预期结果
])# model.summary()  # 打印网络结构# 三、编译
model.compile(optimizer='adam',loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy'])# 四、训练模型
history = model.fit(train_images, train_labels, epochs=10,validation_data=(test_images, test_labels))# 五、预测
plt.imshow(test_images[1])
plt.show()pre = model.predict(test_images)
print(class_names[np.argmax(pre[1])])# 六、模型评估
plt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['val_accuracy'], label='val_accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.ylim([0.5, 1])
plt.legend(loc='lower right')
plt.show()test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)print("test_loss:", test_loss, "---------test_acc:", test_acc)

3、运行结果展示

(1)展示cifar10里面的20张图片

(2)预测的图片

遗憾,我的结果预测错误,预测的是:automobile

(3)模型评估

上图可以看到,测试精确度达到70%左右。

这篇关于Tensorflow入门实战 P02-彩色图片分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1018283

相关文章

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

Spring WebClient从入门到精通

《SpringWebClient从入门到精通》本文详解SpringWebClient非阻塞响应式特性及优势,涵盖核心API、实战应用与性能优化,对比RestTemplate,为微服务通信提供高效解决... 目录一、WebClient 概述1.1 为什么选择 WebClient?1.2 WebClient 与

java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)

《java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)》:本文主要介绍java中pdf模版填充表单踩坑的相关资料,OpenPDF、iText、PDFBox是三... 目录准备Pdf模版方法1:itextpdf7填充表单(1)加入依赖(2)代码(3)遇到的问题方法2:pd

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

在IntelliJ IDEA中高效运行与调试Spring Boot项目的实战步骤

《在IntelliJIDEA中高效运行与调试SpringBoot项目的实战步骤》本章详解SpringBoot项目导入IntelliJIDEA的流程,教授运行与调试技巧,包括断点设置与变量查看,奠定... 目录引言:为良驹配上好鞍一、为何选择IntelliJ IDEA?二、实战:导入并运行你的第一个项目步骤1

Spring Boot3.0新特性全面解析与应用实战

《SpringBoot3.0新特性全面解析与应用实战》SpringBoot3.0作为Spring生态系统的一个重要里程碑,带来了众多令人兴奋的新特性和改进,本文将深入解析SpringBoot3.0的... 目录核心变化概览Java版本要求提升迁移至Jakarta EE重要新特性详解1. Native Ima

Spring Boot 与微服务入门实战详细总结

《SpringBoot与微服务入门实战详细总结》本文讲解SpringBoot框架的核心特性如快速构建、自动配置、零XML与微服务架构的定义、演进及优缺点,涵盖开发环境准备和HelloWorld实战... 目录一、Spring Boot 核心概述二、微服务架构详解1. 微服务的定义与演进2. 微服务的优缺点三

SpringBoot集成MyBatis实现SQL拦截器的实战指南

《SpringBoot集成MyBatis实现SQL拦截器的实战指南》这篇文章主要为大家详细介绍了SpringBoot集成MyBatis实现SQL拦截器的相关知识,文中的示例代码讲解详细,有需要的小伙伴... 目录一、为什么需要SQL拦截器?二、MyBATis拦截器基础2.1 核心接口:Interceptor

从入门到精通详解LangChain加载HTML内容的全攻略

《从入门到精通详解LangChain加载HTML内容的全攻略》这篇文章主要为大家详细介绍了如何用LangChain优雅地处理HTML内容,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录引言:当大语言模型遇见html一、HTML加载器为什么需要专门的HTML加载器核心加载器对比表二

从入门到进阶讲解Python自动化Playwright实战指南

《从入门到进阶讲解Python自动化Playwright实战指南》Playwright是针对Python语言的纯自动化工具,它可以通过单个API自动执行Chromium,Firefox和WebKit... 目录Playwright 简介核心优势安装步骤观点与案例结合Playwright 核心功能从零开始学习