基于心电疾病分类的深度学习模型部署应用于OrangePi Kunpeng Pro开发板

本文主要是介绍基于心电疾病分类的深度学习模型部署应用于OrangePi Kunpeng Pro开发板,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、开发板资源介绍

该板具有4核心64位的处理器和8TOPS的AI算力,让我们验证一下,在该板上跑深度学习模型的效果如何?

二、配网及远程SSH登录访问系统

在通过microusb连接串口进入开发板调试,在命令行终端执行以下命令 

1)搜索wifi名称 

nmcli dev wifi

 2)连接wifi

sudo nmcli dev wifi connect wifi_name password wifi_passwd

 3)查看IP地址

ip a s wlan0

4)ssh访问

 通过xshell工具访问该开发板

三、安装开发环境

3.1 安装python环境

1)安装openssl 

sudo yum update -y
sudo yum -y groupinstall "Development tools"
sudo yum install openssl-devel bzip2-devel expat-devel gdbm-devel readline-devel sqlite-devel psmisc libffi-devel gcc mariadb-devel

 2)下载安装包

cd /usr/local
sudo wget https://www.python.org/ftp/python/3.7.0/Python-3.7.0.tgz
sudo tar -zxvf Python-3.7.0.tgz

 3)切换目录并执行安装

cd Python-3.7.0
sudo ./configure --prefix=/usr/local/python3
sudo make && make install

 4)环境配置

ln -s /usr/local/python3/bin/python3.7 /usr/bin/python3
ln -s /usr/local/python3/bin/pip3.7 /usr/bin/pip3

 3.2 创建虚拟环境

virtualenv ~/ecgclassification/venv --python=python3.9

其它相关配置

# 激活虚拟环境
source ~/ecgclassification/venv/bin/activate
#查看虚拟环境下的python路径
which python
# 安装相关包
pip install numpy  -i https://pypi.tuna.tsinghua.edu.cn/simple
# 退出虚拟环境
deactivate

 3.3 安装相关依赖

pip install h5py  -i https://pypi.tuna.tsinghua.edu.cn/simplepip install tensorflow==2.11.0  -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install keras==2.11.0  -i https://pypi.tuna.tsinghua.edu.cn/simplepip install scikit-learn  -i https://pypi.tuna.tsinghua.edu.cn/simplepip install matplotlib -i https://pypi.tuna.tsinghua.edu.cn/simple

报错:

(venv) [root@openEuler ECGclassification]# pip install tensorFlow i https://pypi.tuna.tsinghua.edu.cn/simple Collecting https://pypi.tuna.tsinghua.edu.cn/simple Downloading https://pypi.tuna.tsinghua.edu.cn/simple (32.5 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 32.5/32.5 MB 1.1 MB/s eta 0:00:00 ERROR: Cannot unpack file /tmp/pip-unpack-s5nhhe64/simple.html (downloaded from /tmp/pip-req-build-89nbvw_j, content-type: text/html); cannot detect archive format ERROR: Cannot determine archive format of /tmp/pip-req-build-89nbvw_j

安装包名大小写敏感,更改正确! 

 解决方式:

sudo yum install hdf5-devel

 

再次安装tensoflow成功

 

 

四、心电疾病分类任务介绍及移植深度学习模型

    依据采集的单导联心电数据,构建的深度学习模型进行数据训练,基于训练生成的模型对心电数据进行疾病的分类任务(多分类-具体为7分类)。将该模型部署于该开发板上进行运行测试。

执行模型:

python3 ./PredictOnly.py

报错:

 model = tf.keras.models.load_model(model_path) File "/usr/local/lib/python3.9/site-packages/keras/src/saving/saving_api.py", line 193, in load_model raise ValueError( ValueError: File format not supported: filepath=save/CNN. Keras 3 only supports V3 `.keras` files and legacy H5 format files (`.h5` extension). Note that the legacy SavedModel format is not supported by `load_model()` in Keras 3. In order to reload a TensorFlow SavedModel as an inference-only layer in Keras 3, use `keras.layers.TFSMLayer(save/CNN, call_endpoint='serving_default')` (note that your `call_endpoint` might have a different name).

原因是安装TensorFlow版本不对,将2.16.0降到2.11.0后,以及keras从3.3.0降到2.9.0后正常。 

模型为:CNN架构

模型大小:pd格式,40Mb左右。 

五、测试结果

5.1  以pd格式的模型加载进行预测结果对比

 1)在R900p电脑上运行

执行时间1.04s

2)在该板子上的执行时间:

执行时间3.48s:

 5.2  以pd格式的模型转换为tflite格式并进行预测结果对比

 1)在R900p电脑上运行

执行时间0.08s

2)在该板子上的执行时间:

执行时间0.07s:

六、体验总结

对于深度学习模型的数据预测推理结果对比情况,在加载pd模型进行预测时:预测结果时间在3.48s。转换为tflite格式后部署,在笔记本电脑上运行的时间和在该开发板上运行的时间相当,在0.1s内,而且在该板子上运行的时间明显更快一些。因此通过对比结果来看,该开发板的计算性能不错,板子的运算能力能在实际场景下满足深度学习模型实时预测分类的需求。

这篇关于基于心电疾病分类的深度学习模型部署应用于OrangePi Kunpeng Pro开发板的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1016853

相关文章

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

C语言中位操作的实际应用举例

《C语言中位操作的实际应用举例》:本文主要介绍C语言中位操作的实际应用,总结了位操作的使用场景,并指出了需要注意的问题,如可读性、平台依赖性和溢出风险,文中通过代码介绍的非常详细,需要的朋友可以参... 目录1. 嵌入式系统与硬件寄存器操作2. 网络协议解析3. 图像处理与颜色编码4. 高效处理布尔标志集合

Java中的Lambda表达式及其应用小结

《Java中的Lambda表达式及其应用小结》Java中的Lambda表达式是一项极具创新性的特性,它使得Java代码更加简洁和高效,尤其是在集合操作和并行处理方面,:本文主要介绍Java中的La... 目录前言1. 什么是Lambda表达式?2. Lambda表达式的基本语法例子1:最简单的Lambda表

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

售价599元起! 华为路由器X1/Pro发布 配置与区别一览

《售价599元起!华为路由器X1/Pro发布配置与区别一览》华为路由器X1/Pro发布,有朋友留言问华为路由X1和X1Pro怎么选择,关于这个问题,本期图文将对这二款路由器做了期参数对比,大家看... 华为路由 X1 系列已经正式发布并开启预售,将在 4 月 25 日 10:08 正式开售,两款产品分别为华

SpringShell命令行之交互式Shell应用开发方式

《SpringShell命令行之交互式Shell应用开发方式》本文将深入探讨SpringShell的核心特性、实现方式及应用场景,帮助开发者掌握这一强大工具,具有很好的参考价值,希望对大家有所帮助,如... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定

SpringBoot应用中出现的Full GC问题的场景与解决

《SpringBoot应用中出现的FullGC问题的场景与解决》这篇文章主要为大家详细介绍了SpringBoot应用中出现的FullGC问题的场景与解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录Full GC的原理与触发条件原理触发条件对Spring Boot应用的影响示例代码优化建议结论F