基于心电疾病分类的深度学习模型部署应用于OrangePi Kunpeng Pro开发板

本文主要是介绍基于心电疾病分类的深度学习模型部署应用于OrangePi Kunpeng Pro开发板,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、开发板资源介绍

该板具有4核心64位的处理器和8TOPS的AI算力,让我们验证一下,在该板上跑深度学习模型的效果如何?

二、配网及远程SSH登录访问系统

在通过microusb连接串口进入开发板调试,在命令行终端执行以下命令 

1)搜索wifi名称 

nmcli dev wifi

 2)连接wifi

sudo nmcli dev wifi connect wifi_name password wifi_passwd

 3)查看IP地址

ip a s wlan0

4)ssh访问

 通过xshell工具访问该开发板

三、安装开发环境

3.1 安装python环境

1)安装openssl 

sudo yum update -y
sudo yum -y groupinstall "Development tools"
sudo yum install openssl-devel bzip2-devel expat-devel gdbm-devel readline-devel sqlite-devel psmisc libffi-devel gcc mariadb-devel

 2)下载安装包

cd /usr/local
sudo wget https://www.python.org/ftp/python/3.7.0/Python-3.7.0.tgz
sudo tar -zxvf Python-3.7.0.tgz

 3)切换目录并执行安装

cd Python-3.7.0
sudo ./configure --prefix=/usr/local/python3
sudo make && make install

 4)环境配置

ln -s /usr/local/python3/bin/python3.7 /usr/bin/python3
ln -s /usr/local/python3/bin/pip3.7 /usr/bin/pip3

 3.2 创建虚拟环境

virtualenv ~/ecgclassification/venv --python=python3.9

其它相关配置

# 激活虚拟环境
source ~/ecgclassification/venv/bin/activate
#查看虚拟环境下的python路径
which python
# 安装相关包
pip install numpy  -i https://pypi.tuna.tsinghua.edu.cn/simple
# 退出虚拟环境
deactivate

 3.3 安装相关依赖

pip install h5py  -i https://pypi.tuna.tsinghua.edu.cn/simplepip install tensorflow==2.11.0  -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install keras==2.11.0  -i https://pypi.tuna.tsinghua.edu.cn/simplepip install scikit-learn  -i https://pypi.tuna.tsinghua.edu.cn/simplepip install matplotlib -i https://pypi.tuna.tsinghua.edu.cn/simple

报错:

(venv) [root@openEuler ECGclassification]# pip install tensorFlow i https://pypi.tuna.tsinghua.edu.cn/simple Collecting https://pypi.tuna.tsinghua.edu.cn/simple Downloading https://pypi.tuna.tsinghua.edu.cn/simple (32.5 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 32.5/32.5 MB 1.1 MB/s eta 0:00:00 ERROR: Cannot unpack file /tmp/pip-unpack-s5nhhe64/simple.html (downloaded from /tmp/pip-req-build-89nbvw_j, content-type: text/html); cannot detect archive format ERROR: Cannot determine archive format of /tmp/pip-req-build-89nbvw_j

安装包名大小写敏感,更改正确! 

 解决方式:

sudo yum install hdf5-devel

 

再次安装tensoflow成功

 

 

四、心电疾病分类任务介绍及移植深度学习模型

    依据采集的单导联心电数据,构建的深度学习模型进行数据训练,基于训练生成的模型对心电数据进行疾病的分类任务(多分类-具体为7分类)。将该模型部署于该开发板上进行运行测试。

执行模型:

python3 ./PredictOnly.py

报错:

 model = tf.keras.models.load_model(model_path) File "/usr/local/lib/python3.9/site-packages/keras/src/saving/saving_api.py", line 193, in load_model raise ValueError( ValueError: File format not supported: filepath=save/CNN. Keras 3 only supports V3 `.keras` files and legacy H5 format files (`.h5` extension). Note that the legacy SavedModel format is not supported by `load_model()` in Keras 3. In order to reload a TensorFlow SavedModel as an inference-only layer in Keras 3, use `keras.layers.TFSMLayer(save/CNN, call_endpoint='serving_default')` (note that your `call_endpoint` might have a different name).

原因是安装TensorFlow版本不对,将2.16.0降到2.11.0后,以及keras从3.3.0降到2.9.0后正常。 

模型为:CNN架构

模型大小:pd格式,40Mb左右。 

五、测试结果

5.1  以pd格式的模型加载进行预测结果对比

 1)在R900p电脑上运行

执行时间1.04s

2)在该板子上的执行时间:

执行时间3.48s:

 5.2  以pd格式的模型转换为tflite格式并进行预测结果对比

 1)在R900p电脑上运行

执行时间0.08s

2)在该板子上的执行时间:

执行时间0.07s:

六、体验总结

对于深度学习模型的数据预测推理结果对比情况,在加载pd模型进行预测时:预测结果时间在3.48s。转换为tflite格式后部署,在笔记本电脑上运行的时间和在该开发板上运行的时间相当,在0.1s内,而且在该板子上运行的时间明显更快一些。因此通过对比结果来看,该开发板的计算性能不错,板子的运算能力能在实际场景下满足深度学习模型实时预测分类的需求。

这篇关于基于心电疾病分类的深度学习模型部署应用于OrangePi Kunpeng Pro开发板的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1016853

相关文章

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We

Java Stream流之GroupBy的用法及应用场景

《JavaStream流之GroupBy的用法及应用场景》本教程将详细介绍如何在Java中使用Stream流的groupby方法,包括基本用法和一些常见的实际应用场景,感兴趣的朋友一起看看吧... 目录Java Stream流之GroupBy的用法1. 前言2. 基础概念什么是 GroupBy?Stream

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

C#中的Converter的具体应用

《C#中的Converter的具体应用》C#中的Converter提供了一种灵活的类型转换机制,本文详细介绍了Converter的基本概念、使用场景,具有一定的参考价值,感兴趣的可以了解一下... 目录Converter的基本概念1. Converter委托2. 使用场景布尔型转换示例示例1:简单的字符串到

Spring Boot Actuator应用监控与管理的详细步骤

《SpringBootActuator应用监控与管理的详细步骤》SpringBootActuator是SpringBoot的监控工具,提供健康检查、性能指标、日志管理等核心功能,支持自定义和扩展端... 目录一、 Spring Boot Actuator 概述二、 集成 Spring Boot Actuat

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em