Tensorflow lite for 移动端安卓开发(三)——移动端测试自己的模型

2024-05-30 05:58

本文主要是介绍Tensorflow lite for 移动端安卓开发(三)——移动端测试自己的模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Tensorflow-lite官方给的应用是一个摄像头demo,主要由ImageClassifier类和Camera2BasicFragment类构成,ImageClassifier类为一个抽象类,由浮点类和数字量化类两类继承,主要实现读取,模型和预测的功能。Camera2BasicFragment类为碎片类,主要实现摄像头的预览功能。基于项目需要,为了能够在移动端测试model的性能,在原demo的基础上开发了一个测试demo,从移动端本地读取测试集进行预测,将预测结果以txt保存在本地,同时计算每类的精确率和召回率在终端显示,先给出demo效果图。
这里写图片描述
这里写图片描述
第一个图展示的是float模型跑出来的结果,第二个图展示的是量化模型的结果Quant量化模型跑出来的结果精度下降很多。
demo的github代码如下:https://github.com/GeekLee95/TFlite_android_test/tree/master
代码主要由以下四个类构成
这里写图片描述
ImageClassifer类 为抽象类
ImageClassifierFloatInception为浮点型子类,对应的浮点模型为assets资源下的7_float.tflite
ImageClaaifierQuantizedMobileNet为量化型子类,对应的数字量化模型为assets资源下的7.tflite
Mainactivity为主活动,主要涉及读取文件,图片格式转化和模型预测等方法。
output_labels.txt为模型的标签文件。

下面介绍主活动的主要方法。

1). public static void verifyStoragePermissions(Activity activity)
该函数实现动态申请权限,android 6.0以后为了提高系统安全,必须要在程序中动态申请权限
首先在清单文件中配置需要申请的权限,

<manifest xmlns:android="http://schemas.android.com/apk/res/android"package="com.example.liuli.openfiles"><uses-permission android:name="android.permission.MOUNT_UNMOUNT_FILESYSTEM"/><uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/><uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE"/>

然后再动态申请

public static void verifyStoragePermissions(Activity activity){try{int permission= ActivityCompat.checkSelfPermission(activity,"android.permission.WRITE_EXTERNAL_STORAGE");if(permission!= PackageManager.PERMISSION_DENIED){ActivityCompat.requestPermissions(activity,PERMISSIONS_STORGE,REQUEST_EXTERNAL_STORAGE);}} catch (Exception e){e.printStackTrace();}}

2). private List getImagePath()从本地存储中获取测试图片路径,可以选择内部存储(外置SD卡)和扩展存储卡(TF卡)路径。

private List<String> getImagePath(){List<String> dirpath = getExtSDCardPathList();Log.d("sd_path",dirpath.get(0));Log.d("tf_path",dirpath.get(1));tfpath = dirpath.get(1);List<String> imagePathList = new ArrayList<String>();String filepath = tfpath+ File.separator+"DCIM"+File.separator+"TEST";//String filepath = Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_PICTURES).toString();//Context context = getApplicationContext(); //获取当前上下文//String filepath = context.getExternalFilesDir("DCIM")+File.separator;//得到该路径文件夹下的所有文件Log.d("filepath",filepath);File fileAll = new File(filepath);boolean result = fileAll.exists();File[] files = fileAll.listFiles();for(int i = 0;i<files.length;i++){File file = files[i];if(checkIsImageFile(file.getPath())){imagePathList.add(file.getPath());}}return imagePathList;}

3). private Bitmap createImageThumbnail(String filePath,int newHeight,int newWidth) 将原始图片缩放成指定大小的bitmap格式,比如mobilenet模型的input_size: 224x224

private Bitmap createImageThumbnail(String filePath,int newHeight,int newWidth){Bitmap bm = BitmapFactory.decodeFile(filePath);float width = bm.getWidth();float height = bm.getHeight();Log.i("old_size:","宽度是"+width+",高度是"+height);Matrix matrix = new Matrix();//计算宽高缩放率float scaleWidth = ((float) newWidth)/width;float scaleHeight = ((float) newHeight)/height;//缩放图片动作matrix.postScale(scaleWidth,scaleHeight);Bitmap bitmap = Bitmap.createBitmap(bm,0,0,(int)width,(int)height,matrix,true);Log.i("new_size:","宽度是"+bitmap.getHeight()+",高度是"+bitmap.getWidth());return bitmap;}

4). private void classifyFrame(List Frames) 进行模型预测

    private void classifyFrame(List<String> Frames){int num = 0;int carlessnum = 0,carlessTP = 0,carlessFP = 0;int carnormalnum = 0,carnormalTP = 0,carnormalFP = 0;int carmorenum = 0,carmoreTP = 0,carmoreFP = 0;//显示待预测图片总数mShownum.setText(Integer.toString(Frames.size()));Log.d("mShownum",Integer.toString(Frames.size()));String resultfilepath = tfpath+ File.separator+"DCIM"+File.separator+"TESTRESULT"+File.separator;for(int i = 0;i<Frames.size();i++){String imagepath = Frames.get(i);Bitmap bitmap = createImageThumbnail(imagepath,classifier.getImageSizeX(),classifier.getImageSizeY());String result = classifier.classifyFrame(bitmap);Log.d("Predict_result"+Integer.toString(i),result);String imagename = imagepath.split("/")[imagepath.split("/").length-1];//将数据保存到本地String resultname = imagename.replace(".jpg",".txt");Log.d("resultname",resultname);writeTxtToFile(result,resultfilepath,resultname);String label = imagename.split("_")[0];Log.d("label"+Integer.toString(i),label);switch (label){case "0":carlessnum++;Log.d("carlessnum",Integer.toString(carlessnum));if(result == classifier.labelList.get(Integer.parseInt(label))){carlessTP++;Log.d("carlessTP",Integer.toString(carlessTP));}break;case "1":carnormalnum++;Log.d("carnormalnum",Integer.toString(carnormalnum));if(result == classifier.labelList.get(Integer.parseInt(label))){carnormalTP++;Log.d("carnormalTP",Integer.toString(carnormalTP));}break;case "2":carmorenum++;Log.d("carmorenum",Integer.toString(carmorenum));if(result == classifier.labelList.get(Integer.parseInt(label))){carmoreTP++;Log.d("carmoreTP",Integer.toString(carmoreTP));}break;}if(result != classifier.labelList.get(Integer.parseInt(label))){switch (result){case "类别1":carlessFP++;break;case "类别2":carnormalFP++;break;case "类别3":carmoreFP++;break;}}if(result == classifier.labelList.get(Integer.parseInt(label))){num++;} else{wrongFrames.add(imagepath+"predict:"+result);}Log.d("图片数:", Integer.toString(i+1));Log.d("正确数:", Integer.toString(num));}float result  = (float)num/(float)Frames.size();mShowResult.setText(Float.toString(result));// 计算每一类的精确率和召回率float carlessrec = (float)Math.round((float)carlessTP/(float)carlessnum*10000)/10000;float carlessacc = (float) Math.round((float)carlessTP/(float)(carlessTP+carlessFP)*10000)/10000;float carnormalrec = (float) Math.round((float)carnormalTP/(float)carnormalnum*10000)/10000;float carnormalacc = (float) Math.round((float)carnormalTP /(float)(carnormalTP+carnormalFP)*10000)/10000;float carmorerec = (float) Math.round((float) carmoreTP/(float)carmorenum*10000)/10000;float carmoreacc = (float) Math.round((float)carmoreTP/(float)(carmoreTP+carmoreFP)*10000)/10000;mShowcarlessacc.setText(Float.toString(carlessacc));mShowcarlessrec.setText(Float.toString(carlessrec));mShowcarlessnum.setText(Integer.toString(carlessnum));mShowcarnormacc.setText(Float.toString(carnormalacc));mShowcarnormrec.setText(Float.toString(carnormalrec));mShowcarnormnum.setText(Integer.toString(carnormalnum));mShowcarmoreacc.setText(Float.toString(carmoreacc));mShowcarmorerec.setText(Float.toString(carmorerec));mShowcarmorenum.setText(Integer.toString(carmorenum));}

后续将会对模型进行改进和完善。

这篇关于Tensorflow lite for 移动端安卓开发(三)——移动端测试自己的模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1015752

相关文章

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

Java中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例解析

《Java中的分布式系统开发基于Zookeeper与Dubbo的应用案例解析》本文将通过实际案例,带你走进基于Zookeeper与Dubbo的分布式系统开发,本文通过实例代码给大家介绍的非常详... 目录Java 中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例一、分布式系统中的挑战二

Linux五种IO模型的使用解读

《Linux五种IO模型的使用解读》文章系统解析了Linux的五种IO模型(阻塞、非阻塞、IO复用、信号驱动、异步),重点区分同步与异步IO的本质差异,强调同步由用户发起,异步由内核触发,通过对比各模... 目录1.IO模型简介2.五种IO模型2.1 IO模型分析方法2.2 阻塞IO2.3 非阻塞IO2.4

基于Go语言开发一个 IP 归属地查询接口工具

《基于Go语言开发一个IP归属地查询接口工具》在日常开发中,IP地址归属地查询是一个常见需求,本文将带大家使用Go语言快速开发一个IP归属地查询接口服务,有需要的小伙伴可以了解下... 目录功能目标技术栈项目结构核心代码(main.go)使用方法扩展功能总结在日常开发中,IP 地址归属地查询是一个常见需求:

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

使用docker搭建嵌入式Linux开发环境

《使用docker搭建嵌入式Linux开发环境》本文主要介绍了使用docker搭建嵌入式Linux开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1、前言2、安装docker3、编写容器管理脚本4、创建容器1、前言在日常开发全志、rk等不同

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

基于Java开发一个极简版敏感词检测工具

《基于Java开发一个极简版敏感词检测工具》这篇文章主要为大家详细介绍了如何基于Java开发一个极简版敏感词检测工具,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下... 目录你是否还在为敏感词检测头疼一、极简版Java敏感词检测工具的3大核心优势1.1 优势1:DFA算法驱动,效率提升10