R语言入门 | 使用 ggplot2 进行数据可视化

2024-05-29 19:44

本文主要是介绍R语言入门 | 使用 ggplot2 进行数据可视化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

   

1.0准备工作

先下好tidyverse包,并进行加载。
install.packages ( "tidyverse" )
library(tidyverse)
R 包只需安装一次,但每次开始新会话时都要重新加载。

1.1 数据框 

数据框是变量(列)和观测(行)的矩形集合。

下文经常使用mpg 包含了由美国环境保护协会收集的 38 种车型的观测数据。

当你想了解mpg数据框的信息时,可使用 ?<数据框名> 来查阅。

1.2 创建 ggplot 图形

ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy))

 

ggplot(data = mpg): 会创建一张空白图
函数 geom_point() 向图中添加一 个点层,可以创建一张散点图。
 mapping 参数:定义了如何将数据集中的变量映射为图形属性。
aes() 函数:aes() 函数的 x 参数和 y 参数分别指定了映射到 x 轴的变量与映射到 y 轴的变量。

1.3 绘图模板 

ggplot(data = <DATA>) + 
<GEOM_FUNCTION>(mapping = aes(<MAPPINGS>))

#<GEOM_FUNCTION>
geom_point散点图

#<MAPPINGS>
x=<变量名>,y=<变量名>,color=<变量名>,shape,size,alpha(透明度)

eg.ggplot(data = diamonds) + geom_point(mapping = aes(x=carat,y=price))

1.4 图形属性映射 

eg.ggplot(data = mpg) + 
geom_point(mapping = aes(x = displ, y = hwy,
color = class))
可以将点的颜色映射为变量class               ^^^^^^^^^^^^^

区分:
#以手动为几何对象设置图形属性(常量)
ggplot(data = mpg) + 
geom_point(mapping = aes(x = displ, y = hwy), color = "blue",shape=21,fill="red")
                                              ^^^^^^^^^^^^^^^^^^^^^^^写在aes外面

1.5 分面 

1.5.1 facet_wrap()
 

eg. ggplot(data = mpg) + 
geom_point(mapping = aes(x = displ, y = hwy)) + 
facet_wrap(~ class, nrow = 2)

          以class来分组,排成2行


1.5.2 facet_grid()


(多一个分类)
eg.ggplot(data = mpg) + 
geom_point(mapping = aes(x = displ, y = hwy)) + 
facet_grid(drv ~ cyl)

1.6 几何对象 

几何对象是图中用来表示数据的几何图形对象。我们经常根据图中使用的几何对象类型来
描述相应的图。例如,条形图使用了条形几何对象,折线图使用了直线几何对象,箱线图
使用了矩形和直线几何对象。
#geom_point散点图
#geom_smooth平滑曲线图
#geom_bar条形图


#可以叠加使用
eg.ggplot(data = mpg) + 
+     geom_smooth(mapping = aes(x = displ, y = hwy)) + 
+     geom_point(mapping = aes(x = displ, y = hwy))

#在geom_smooth平滑曲线图中,可以按照不同的线型绘制出不同的曲线,每条曲线对应映射到线型的
变量的一个唯一值:
ggplot(data = mpg) + 
geom_smooth(mapping = aes(x = displ, y = hwy, linetype = drv))
linetype线性
group
color
#不想要示例图
show.legend=FALSE  位置:和mapping并列
#不想要质性区间
se=FALSE  位置:和mapping并列

1.7 统计变换 

1.8 位置调整 

ggplot(data = diamonds) + 
geom_bar( 
    mapping = aes(x = cut, fill = clarity), 

    position = "dodge" 
  )


position参数

dodge分开排


identity叠着排,实际高度


默认 堆叠着排


jitter(适用范围:散点图)
position = "jitter"为每个数据点添加一个很小的随机扰动,这样就可以将重叠的点分散开:
ggplot(data = mpg) + 
geom_point( 
    mapping = aes(x = displ, y = hwy), 
    position = "jitter" 
  )

  

对比没有使用jitter的:

画盒图


ggplot(data = mpg,mapping = aes(x = class, y = hwy)) + 
geom_boxplot( aes(fill=class))

1.9 坐标系 

1.10 图形分层语法 

#图形属性映射

#分面

#几何对象  


几何对象是图中用来表示数据的几何图形对象。我们经常根据图中使用的几何对象类型来
描述相应的图。例如,条形图使用了条形几何对象,折线图使用了直线几何对象,箱线图
使用了矩形和直线几何对象。


#geom_point散点图
#geom_smooth平滑曲线图
#geom_bar条形图


#可以叠加使用
eg.ggplot(data = mpg) + 
+     geom_smooth(mapping = aes(x = displ, y = hwy)) + 
+     geom_point(mapping = aes(x = displ, y = hwy))

#在geom_smooth平滑曲线图中,可以按照不同的线型绘制出不同的曲线,每条曲线对应映射到线型的
变量的一个唯一值:
ggplot(data = mpg) + 
geom_smooth(mapping = aes(x = displ, y = hwy, linetype = drv))
linetype线性
group
color
#不想要示例图
show.legend=FALSE  位置:和mapping并列
#不想要质性区间
se=FALSE  位置:和mapping并列

#简化
全局映射
ggplot是全局函数
而geom_point等是局部函数
ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) + 
geom_point(mapping = aes(color = class)) + 
geom_smooth()

#筛选
data = filter(数据集, class == 变量名)
eg.
ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) + 
geom_point(mapping = aes(color = class)) + 
geom_smooth( 
    data = filter(mpg, class == "subcompact"), 
    se 
= FALSE 
  )

#条形图
geom_bar
ggplot(data = diamonds) + 
geom_bar(mapping = aes(x = cut))   不用写y轴  

#统计变换函数


stat_count(可替换geom_bar)
ggplot(data = diamonds) + 
stat_count(mapping = aes(x = cut))

#如果是统计过的数据
ggplot(data = demo) + 
geom_bar( 
    mapping = aes(x = a, y = b), stat = "identity" 
  )
  
  
#显示一张表示比例(而不是计数)的条形图:
ggplot(data = diamonds) + 
geom_bar( 
    mapping = aes(x = cut, y = ..prop.., group = 1) )  


#强调统计变换用stat_summary()
ggplot(data = diamonds) + 
stat_summary( 
    mapping = aes(x = cut, y = depth), 
    fun.ymin = min, 
    fun.ymax = max, 
    fun.y = median >>>>>中位数,这里也可以改成mean,看均值
  )
  
#为条形图上色
 ggplot(data = diamonds) + 
geom_bar(mapping = aes(x = cut, color = cut)) 
ggplot(data = diamonds) + 
geom_bar(mapping = aes(x = cut, fill = cut)) //fill明显更常用

#映射
ggplot(data = diamonds) + 
+     geom_bar(mapping = aes(x = cut, fill = color)) 

#位置调整


ggplot(data = diamonds) + 
geom_bar( 
    mapping = aes(x = cut, fill = clarity), 
    position = "dodge" 
  )
position参数
dodge分开排
identity叠着排,实际高度
默认 堆叠着排
jitter(散点图用)
position = "jitter"为每个数据点添加一个很小的随机扰动,这样就可以将重叠的点分散开:
ggplot(data = mpg) + 
geom_point( 
    mapping = aes(x = displ, y = hwy), 
    position = "jitter" 
  )
  


#画盒图


ggplot(data = mpg,mapping = aes(x = class, y = hwy)) + 
geom_boxplot( 
    aes(fill=class))
    

#旋转坐标系  coord_flip()


ggplot(data = mpg, mapping = aes(x = class, y = hwy)) + 
geom_boxplot() + 
coord_flip()

#绘制空间数据  geom_polygon()


nz <- map_data("nz") //取出新西兰地图
ggplot(nz, aes(long, lat, group = group)) + 
geom_polygon(fill = "white", color = "black") + 
coord_quickmap     coord_quickmap函数可以为地图设置合适的纵横比

#画鸡冠图

coord_polar()画极坐标

1.coord_polar(theta="x")

p<-ggplot(data = diamonds) +   geom_bar(mapping = aes(x = cut, fill = cut))+coord_polar()

2.coord_polar(theta="y") 

p<-ggplot(data = diamonds) + geom_bar(mapping = aes(x = cut, fill = cut,width=1))+coord_polar(theta="y")

#分布进行,把命令储存到变量,可进行叠加

eg.

bar <- ggplot(data = diamonds) +
 geom_bar(
 mapping = aes(x = cut, fill = cut),
 show.legend = FALSE,
 width = 1
 ) +
 theme(aspect.ratio = 1) +
 labs(x = NULL, y = NULL)

bar + coord_flip()

bar + coord_polar()//鸡冠图

 show.legend = FALSE:删除图例

width=1:width越大,图挨得越近,等于1时,挨在一起

 theme(aspect.ratio = 1):宽高比为1,更圆

 labs(x = NULL, y = NULL):去除标签注释

频率分布图geom_freqpoly()

 ggplot(data = diamonds, mapping = aes(x = price)) +
+     geom_freqpoly(binwidth = 10)

这篇关于R语言入门 | 使用 ggplot2 进行数据可视化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1014468

相关文章

使用animation.css库快速实现CSS3旋转动画效果

《使用animation.css库快速实现CSS3旋转动画效果》随着Web技术的不断发展,动画效果已经成为了网页设计中不可或缺的一部分,本文将深入探讨animation.css的工作原理,如何使用以及... 目录1. css3动画技术简介2. animation.css库介绍2.1 animation.cs

Java进行日期解析与格式化的实现代码

《Java进行日期解析与格式化的实现代码》使用Java搭配ApacheCommonsLang3和Natty库,可以实现灵活高效的日期解析与格式化,本文将通过相关示例为大家讲讲具体的实践操作,需要的可以... 目录一、背景二、依赖介绍1. Apache Commons Lang32. Natty三、核心实现代

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Python文件操作与IO流的使用方式

《Python文件操作与IO流的使用方式》:本文主要介绍Python文件操作与IO流的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python文件操作基础1. 打开文件2. 关闭文件二、文件读写操作1.www.chinasem.cn 读取文件2. 写

SpringBoot实现接口数据加解密的三种实战方案

《SpringBoot实现接口数据加解密的三种实战方案》在金融支付、用户隐私信息传输等场景中,接口数据若以明文传输,极易被中间人攻击窃取,SpringBoot提供了多种优雅的加解密实现方案,本文将从原... 目录一、为什么需要接口数据加解密?二、核心加解密算法选择1. 对称加密(AES)2. 非对称加密(R

基于Go语言实现Base62编码的三种方式以及对比分析

《基于Go语言实现Base62编码的三种方式以及对比分析》Base62编码是一种在字符编码中使用62个字符的编码方式,在计算机科学中,,Go语言是一种静态类型、编译型语言,它由Google开发并开源,... 目录一、标准库现状与解决方案1. 标准库对比表2. 解决方案完整实现代码(含边界处理)二、关键实现细

详解如何在SpringBoot控制器中处理用户数据

《详解如何在SpringBoot控制器中处理用户数据》在SpringBoot应用开发中,控制器(Controller)扮演着至关重要的角色,它负责接收用户请求、处理数据并返回响应,本文将深入浅出地讲解... 目录一、获取请求参数1.1 获取查询参数1.2 获取路径参数二、处理表单提交2.1 处理表单数据三、

PyQt6中QMainWindow组件的使用详解

《PyQt6中QMainWindow组件的使用详解》QMainWindow是PyQt6中用于构建桌面应用程序的基础组件,本文主要介绍了PyQt6中QMainWindow组件的使用,具有一定的参考价值,... 目录1. QMainWindow 组php件概述2. 使用 QMainWindow3. QMainW

使用Python自动化生成PPT并结合LLM生成内容的代码解析

《使用Python自动化生成PPT并结合LLM生成内容的代码解析》PowerPoint是常用的文档工具,但手动设计和排版耗时耗力,本文将展示如何通过Python自动化提取PPT样式并生成新PPT,同时... 目录核心代码解析1. 提取 PPT 样式到 jsON关键步骤:代码片段:2. 应用 JSON 样式到

java变量内存中存储的使用方式

《java变量内存中存储的使用方式》:本文主要介绍java变量内存中存储的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍2、变量的定义3、 变量的类型4、 变量的作用域5、 内存中的存储方式总结1、介绍在 Java 中,变量是用于存储程序中数据